Show simple item record

dc.contributor.authorGrange, RMH
dc.contributor.authorPreedy, MEJ
dc.contributor.authorRenukanthan, A
dc.contributor.authorDignam, JP
dc.contributor.authorLowe, VJ
dc.contributor.authorMoyes, AJ
dc.contributor.authorPérez-Ternero, C
dc.contributor.authorAubdool, AA
dc.contributor.authorBaliga, RS
dc.contributor.authorHobbs, AJ
dc.date.accessioned2021-07-27T10:46:46Z
dc.date.available2021-05-14
dc.date.available2021-07-27T10:46:46Z
dc.date.issued2021-06-15
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/73258
dc.description.abstractBACKGROUND & PURPOSE: Cyclic-3',5'-guanosine monophosphate (cGMP) underpins the bioactivity of nitric oxide (NO) and natriuretic peptides and is key to cardiovascular homeostasis. Cyclic GMP-driven responses are terminated primarily by phosphodiesterases but cellular efflux via multidrug resistance proteins (MRPs) might contribute. Herein, the effect of pharmacological blockade of MRPs on cGMP signalling in the heart and vasculature was investigated in vitro and in vivo. EXPERIMENTAL APPROACHES: Proliferation of human coronary artery smooth muscle cells (hCASMC), vasorelaxation of murine aorta and reductions in mean arterial blood pressure (MABP) in response to NO-donors or natriuretic peptides was determined in the absence and presence of the MRP inhibitor MK571. The ability of MRP inhibition to reverse morphological and contractile deficits in a murine model of pressure overload-induced HF was also explored. KEY RESULTS: MK571 attenuated hCASMC growth and enhanced the anti-proliferative effects of NO and ANP. MRP blockade caused concentration-dependent relaxations of murine aorta and augmented responses to ANP (and to a lesser extent NO). MK571 did not decrease MABP, but enhanced the hypotensive actions of ANP and improved structural and functional indices of disease severity in experimental HF. These beneficial actions of MRP inhibition were associated with a greater intra:extra -cellular cGMP ratio in vitro and in vivo. CONCLUSIONS & IMPLICATIONS: MRP blockade promotes the cardiovascular functions of natriuretic peptides in vitro and in vivo, with more modest effects on NO. MRP inhibition may have therapeutic utility in cardiovascular diseases triggered by dysfunctional cGMP signalling, particularly those associated with altered natriuretic peptide bioactivity.en_US
dc.languageeng
dc.relation.ispartofBr J Pharmacol
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectATP-binding cassette transporteren_US
dc.subjectCyclic GMPen_US
dc.subjectheart failureen_US
dc.subjectmultidrug resistance proteinen_US
dc.subjectnatriuretic peptideen_US
dc.subjectnitric oxideen_US
dc.subjectvasorelaxationen_US
dc.titleMultidrug resistance proteins preferentially regulate natriuretic peptide-driven cGMP signalling in the heart & vasculature.en_US
dc.typeArticleen_US
dc.identifier.doi10.1111/bph.15593
pubs.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/34131904en_US
pubs.notesNot knownen_US
pubs.publication-statusPublished onlineen_US
dcterms.dateAccepted2021-05-14


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 United States
Except where otherwise noted, this item's license is described as Attribution 3.0 United States