Cooperative control of relay based cellular networks
Metadata
Show full item recordAbstract
The increasing popularity of wireless communications and the higher data
requirements of new types of service lead to higher demands on wireless networks.
Relay based cellular networks have been seen as an effective way to meet users’
increased data rate requirements while still retaining the benefits of a cellular
structure. However, maximizing the probability of providing service and spectrum
efficiency are still major challenges for network operators and engineers because of
the heterogeneous traffic demands, hard-to-predict user movements and complex
traffic models.
In a mobile network, load balancing is recognised as an efficient way to increase
the utilization of limited frequency spectrum at reasonable costs. Cooperative
control based on geographic load balancing is employed to provide flexibility for
relay based cellular networks and to respond to changes in the environment.
According to the potential capability of existing antenna systems, adaptive radio
frequency domain control in the physical layer is explored to provide coverage at
the right place at the right time.
This thesis proposes several effective and efficient approaches to improve
spectrum efficiency using network wide optimization to coordinate the coverage
offered by different network components according to the antenna models and
relay station capability. The approaches include tilting of antenna sectors,
changing the power of omni-directional antennas, and changing the assignment of
relay stations to different base stations. Experiments show that the proposed
approaches offer significant improvements and robustness in heterogeneous traffic
scenarios and when the propagation environment changes. The issue of predicting
the consequence of cooperative decisions regarding antenna configurations when
applied in a realistic environment is described, and a coverage prediction model is
proposed. The consequences of applying changes to the antenna configuration on
handovers are analysed in detail. The performance evaluations are based on a
system level simulator in the context of Mobile WiMAX technology, but the
concepts apply more generally.
Authors
Jiang, PengCollections
- Theses [3711]