Can Dynamic Compression in the Absence of Growth Factors Induce Chondrogenic Differentiation of Bone Marrow Derived MSCs Encapsulated in Agarose Hydrogels?
View/ Open
Editors
El Haj, E
Bader, D
Volume
30
Pagination
43 - 46 (4)
Publisher
DOI
10.1007/978-3-642-19044-5_12
Metadata
Show full item recordAbstract
The objectives of this study were twofold; to determine if cartilage specific matrix synthesis by mesenchymal stem cells (MSCs) is regulated by the magnitude and/or duration of dynamic compression in the absence of growth factors, and to investigate if expanding MSCs in the presence of both fibroblast growth factor-2 (FGF-2) and transforming growth factor β-3 (TGF-β3) would influence their subsequent response to dynamic compression following encapsulation in agarose hydrogels. Porcine bone marrow derived MSCs were suspended in agarose and cast to produce cylinders (Ø5×3mm). Constructs were maintained in a chemically defined medium. Dynamic compression was applied at 1 Hz at strain amplitudes of 5%, 10% and 5% superimposed upon a 5% pre-strain for durations of 1, 3 and 12 hours. MSCs were also expanded in the presence of FGF-2 and TGF-β3. The biochemical constituents of constructs were analyzed. Under strain magnitudes of 5% and 10% and durations of 1 and 3 hours small increases in sGAG accumulation relative to unloaded controls were observed. However this was orders of magnitude lower than that induced by TGF-β3 stimulation. Expansion in FGF-2 and TGF-β3 did not positively modulate chondrogenesis of MSCs in either unloaded or loaded culture.