Beyond Conjugacy for Chain Event Graph Model Selection
View/ Open
Publisher
Journal
International Journal of Approximate Reasoning: Uncertainty in Intelligent Systems
ISSN
1873-4731
Metadata
Show full item recordAbstract
Chain event graphs are a family of probabilistic graphical models that generalise Bayesian networks and have been successfully applied to a wide range of domains. Unlike Bayesian networks, these models can encode context-specific conditional independencies as well as asymmetric developments within the evolution of a process. More recently, new model classes belonging to the chain event graph family have been developed for modelling time-to-event data to study the temporal dynamics of a process. However, existing Bayesian model selection algorithms for chain event graphs and its variants rely on all parameters having conjugate priors. This is unrealistic for many real-world applications. In this paper, we propose a mixture modelling approach to model selection in chain event graphs that does not rely on conjugacy. Moreover, we show that this methodology is more amenable to being robustly scaled than the existing model selection algorithms used for this family. We demonstrate our techniques on simulated datasets.
Authors
Shenvi, A; Liverani, SCollections
- Mathematics [1689]