Show simple item record

dc.contributor.authorLai, Xen_US
dc.contributor.authorWu, Ten_US
dc.contributor.authorPan, Cen_US
dc.contributor.authorMai, Len_US
dc.contributor.authorNallanathan, Aen_US
dc.date.accessioned2024-07-11T13:59:24Z
dc.date.issued2024-01-01en_US
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/98026
dc.description.abstractLow-latency computational tasks in Internet-of-Things (IoT) networks require short-packet communications. In this paper, we consider a mobile edge computing (MEC) network under time division multiple access (TDMA)-based short-packet communications. Within the considering network, a mobile user partitions an urgent task into multiple sub-tasks and delegates portions of these sub-tasks to edge computing nodes (ECNs). However, the required computing resource varies randomly along with execution failure. Thus, we explore the execution uncertainty of the proposed MEC network, which holds broader implications across the MEC network. In order to minimize the probability of execution failure in computational tasks, we present an optimal solution that determines the sub-task lengths and the blocklengths for offloading. However, the complexity of the optimal solution increases due to the involvement of the Q function and incomplete Gamma function. Consequently, we develop a low-complexity algorithm that leverages alternating optimization and majorization-maximization (MM) methods, enabling efficient computation of semi-closed-form solutions. Furthermore, to reduce the computational complexity associated with sorting the offloading order of sub-tasks, we propose two sorting criteria based on the computing speeds of the ECNs and the channel gains of the transmission links, respectively. Numerical results have validated the effectiveness of the proposed algorithm and criteria. The results also suggest that the proposed network achieves significant performance gains over the non-orthogonal multiple access (NOMA) and full offloading networks.en_US
dc.relation.ispartofIEEE Transactions on Green Communications and Networkingen_US
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.titleShort-Packet Edge Computing Networks With Execution Uncertaintyen_US
dc.typeArticle
dc.identifier.doi10.1109/TGCN.2024.3373911en_US
pubs.notesNot knownen_US
pubs.publication-statusPublisheden_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
rioxxterms.funder.projectb215eee3-195d-4c4f-a85d-169a4331c138en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record