Show simple item record

dc.contributor.authorKalhor, Sen_US
dc.contributor.authorKindness, SJen_US
dc.contributor.authorWallis, Ren_US
dc.contributor.authorBeere, HEen_US
dc.contributor.authorGhanaatshoar, Men_US
dc.contributor.authorDegl'Innocenti, Ren_US
dc.contributor.authorKelly, MJen_US
dc.contributor.authorHofmann, Sen_US
dc.contributor.authorJoyce, HJen_US
dc.contributor.authorRitchie, DAen_US
dc.contributor.authorDelfanazari, Ken_US
dc.date.accessioned2024-05-22T08:34:56Z
dc.date.available2021-11-01en_US
dc.date.issued2021-11-08en_US
dc.identifier.issn2079-4991en_US
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/97005
dc.description.abstractMetamaterial photonic integrated circuits with arrays of hybrid graphene-superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device's optical responses, such as electromagnetic-induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature (Tc) of Nb. Maximum modulation depths of 57.3% and 97.61% are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs, and significant enhancements of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale future communication and computation systems.en_US
dc.languageengen_US
dc.relation.ispartofNanomaterials (Basel)en_US
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
dc.subjectelectromagnetic induced transparencyen_US
dc.subjectgrapheneen_US
dc.subjecthybrid photonic integrated circuitsen_US
dc.subjectslow light devicesen_US
dc.subjectsuperconductorsen_US
dc.subjectterahertz electronicsen_US
dc.subjectterahertz photonicsen_US
dc.titleActive Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene-Superconductor Photonic Integrated Circuits.en_US
dc.typeArticle
dc.rights.holder© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
dc.identifier.doi10.3390/nano11112999en_US
pubs.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/34835762en_US
pubs.issue11en_US
pubs.notesNot knownen_US
pubs.publication-statusPublished onlineen_US
pubs.volume11en_US
dcterms.dateAccepted2021-11-01en_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
rioxxterms.funder.project2acae7f5-fd8c-4d20-af2e-447fb9664166en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record