Show simple item record

dc.contributor.authorYasin, Mohammed
dc.date.accessioned2015-09-15T13:51:06Z
dc.date.available2015-09-15T13:51:06Z
dc.date.issued2013
dc.identifier.citationYasin, M. 2013. Non-Regenerative Benefits of Adult Bone Marrow Derived Stem Cells for Myocardial Protection. Queen Mary University of London.en_US
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/8701
dc.descriptionPhDen_US
dc.description.abstractIschaemic heart disease is the most common cause of mortality in the western hemisphere and it is rapidly becoming the leading cause of death globally. Moreover, therapeutic interventions by cardiologists and cardiac surgeons frequently subject the heart to acute I/R injury, which in itself can cause mortality. Recent investigations of adult stem cells have primarily focused on their regenerative potential for chronic ischaemic heart disease. In this thesis, I have investigated the hypothesis that adult bone marrow derived stem cells are cardioprotective in acute regional myocardial I/R injury. In a rat model of left anterior descending coronary artery (LAD) reversible occlusion and reperfusion, I demonstrate that an intravenous bolus of adult bone marrow derived (1) bone marrow mononuclear (BMNNC) and (2) mesenchymal stem cells (MSC) upon reperfusion can attenuate infarct size. This effect is comparable to ischaemic preconditioning (IPC), which is the gold standard for cardioprotection. Next, I demonstrated the mechanisms for adult stem cell cardioprotection are principally anti-apoptotic and depend upon stem cell secreted factors to (1) activate phosphatidylinositide 3-kinase (PI3)/Akt cell survival kinase-signaling pathway (2) inhibit glycogen synthase kinase-3β (3) inhibit p38MAPK (4) inhibit nuclear translocation of p65NF-κB. 7 Proteomic analysis of myocardium subjected to I/R and treated with either BMMNC or BMMNC derived supernatant (BMS) upon reperfusion demonstrated higher expression of a whole host of pro-survival proteins. These were notably (1) 14-3-3-ε protein (2) anti-oxidant peroxiredoxin-6 (3) heat shock protein (HSP) αB-crystallin, HSP72, HSP tumour necrosis factor receptor-1 associated protein, and HSP ischaemia responsive protein-94 (4) glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (5) mitochondrial aconitase and mitochondrial voltage-dependent anionselective channel protein-1. Thereafter, I investigated the mobilization of endogenous bone marrow stem cells and trafficking to the ischaemic myocardium by stromal cell derived factor-1 (SDF-1) /chemokine, receptor type 4 (CXCR4) signaling. I demonstrate high up-regulated expression of CXCR4 and CD26 in BMMNC following IPC, which might have a role in IPC-mediated cardioprotection. Finally, and in concordance with this finding I demonstrate that both IPC and an exogenous MSC bolus upon reperfusion can synergize to abolish acute myocardial I/R injury.en_US
dc.description.sponsorshipMedical Research Council (UK); The Wellington Hospital
dc.language.isoenen_US
dc.publisherQueen Mary University of London
dc.subjectMedicineen_US
dc.subjectCanceren_US
dc.subjectPancreatic canceren_US
dc.subjectPancreatic ductal adenocarcinomaen_US
dc.titleNon-Regenerative Benefits of Adult Bone Marrow Derived Stem Cells for Myocardial Protectionen_US
dc.typeThesisen_US
dc.rights.holderThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses [3408]
    Theses Awarded by Queen Mary University of London

Show simple item record