• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Non-Regenerative Benefits of Adult Bone Marrow Derived Stem Cells for Myocardial Protection 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Non-Regenerative Benefits of Adult Bone Marrow Derived Stem Cells for Myocardial Protection
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Non-Regenerative Benefits of Adult Bone Marrow Derived Stem Cells for Myocardial Protection
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Non-Regenerative Benefits of Adult Bone Marrow Derived Stem Cells for Myocardial Protection

    View/Open
    M Yasin PhD.pdf (6.212Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Ischaemic heart disease is the most common cause of mortality in the western hemisphere and it is rapidly becoming the leading cause of death globally. Moreover, therapeutic interventions by cardiologists and cardiac surgeons frequently subject the heart to acute I/R injury, which in itself can cause mortality. Recent investigations of adult stem cells have primarily focused on their regenerative potential for chronic ischaemic heart disease. In this thesis, I have investigated the hypothesis that adult bone marrow derived stem cells are cardioprotective in acute regional myocardial I/R injury. In a rat model of left anterior descending coronary artery (LAD) reversible occlusion and reperfusion, I demonstrate that an intravenous bolus of adult bone marrow derived (1) bone marrow mononuclear (BMNNC) and (2) mesenchymal stem cells (MSC) upon reperfusion can attenuate infarct size. This effect is comparable to ischaemic preconditioning (IPC), which is the gold standard for cardioprotection. Next, I demonstrated the mechanisms for adult stem cell cardioprotection are principally anti-apoptotic and depend upon stem cell secreted factors to (1) activate phosphatidylinositide 3-kinase (PI3)/Akt cell survival kinase-signaling pathway (2) inhibit glycogen synthase kinase-3β (3) inhibit p38MAPK (4) inhibit nuclear translocation of p65NF-κB. 7 Proteomic analysis of myocardium subjected to I/R and treated with either BMMNC or BMMNC derived supernatant (BMS) upon reperfusion demonstrated higher expression of a whole host of pro-survival proteins. These were notably (1) 14-3-3-ε protein (2) anti-oxidant peroxiredoxin-6 (3) heat shock protein (HSP) αB-crystallin, HSP72, HSP tumour necrosis factor receptor-1 associated protein, and HSP ischaemia responsive protein-94 (4) glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (5) mitochondrial aconitase and mitochondrial voltage-dependent anionselective channel protein-1. Thereafter, I investigated the mobilization of endogenous bone marrow stem cells and trafficking to the ischaemic myocardium by stromal cell derived factor-1 (SDF-1) /chemokine, receptor type 4 (CXCR4) signaling. I demonstrate high up-regulated expression of CXCR4 and CD26 in BMMNC following IPC, which might have a role in IPC-mediated cardioprotection. Finally, and in concordance with this finding I demonstrate that both IPC and an exogenous MSC bolus upon reperfusion can synergize to abolish acute myocardial I/R injury.
    Authors
    Yasin, Mohammed
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8701
    Collections
    • Theses [3834]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.