Show simple item record

dc.contributor.authorNicolaou, Michael
dc.identifier.citationNicolaou, M. 2012. Structure and Function Analysis of the Mammalian ATP-Binding Cassette Transporters, ABCB1 and ABCB4. Queen Mary University of London.en_US
dc.description.abstractMammalian ABC (ATP-binding cassette) transporters are integral membrane proteins that translocate allocrites across biological membranes using ATP as a substrate. ABCB1 is a polyspecific efflux pump which can confer multidrug resistance in cancer. ABCB1 is also expressed in a variety of normal tissues where it functions to prevent the accumulation of toxic allocrites. Direct inhibition of ABCB1 can therefore have detrimental effects on patients. Identification of ABCB1-interacting partners that influence trafficking or function would therefore provide alternative targets for therapy which may be cell- or tissue-type specific. The “split-ubiquitin” yeast two-hybrid system, that can detect protein:protein interactions at the plasma membrane, was used to screen for ABCB1-interactors in a human liver library. All candidates isolated from the screen interacted with ABCB1 in a non-specific manner when subjected to strict testing. ABCB4, a close relative of ABCB1, is expressed primarily at the hepatocyte canalicular membrane where it flops phosphatidylcholine (PC) into the outer leaflet for extraction by bile salts. Many ABCB4 non-synonymous mutations have been linked to cholestatic liver diseases in humans, but data confirming an impact on ABCB4 function is lacking. Transient expression of wild-type (WT) ABCB4 in tissue culture has proved difficult because the protein is toxic to HEK293T cells. However, co-expression of the phosphatidylserine flippase ATP8B1 (FIC1) and its accessory protein CDC50A allowed the cells to tolerate ABCB4. To investigate the impact of SNPs on ABCB4 function, equivalent changes were introduced into the ABCB4 cDNA for transient expression in the presence or absence of ATP8B1/CDC50A. ABCB4 expression and targeting to the plasma membrane were monitored by western analysis and confocal microscopy, respectively, and, by “feeding” the transfected cells [methyl-3H]choline, PC efflux to added bile salt acceptor was measured. By thus mimicking the situation at the canalicular membrane I report the preliminary characterisation of nine variants of ABCB4 that have been linked to cholestatic liver disease.en_US
dc.publisherQueen Mary University of Londonen_US
dc.subjectCutaneous Researchen_US
dc.subjectMultidrug resistanceen_US
dc.subjectCholestatic Liver Diseaseen_US
dc.subjectMembrane Transport Biologyen_US
dc.titleStructure and Function Analysis of the Mammalian ATP-Binding Cassette Transporters, ABCB1 and ABCB4.en_US
dc.rights.holderThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author

Files in this item


This item appears in the following Collection(s)

  • Theses [3148]
    Theses Awarded by Queen Mary University of London

Show simple item record