• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Structure and Function Analysis of the Mammalian ATP-Binding Cassette Transporters, ABCB1 and ABCB4. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Structure and Function Analysis of the Mammalian ATP-Binding Cassette Transporters, ABCB1 and ABCB4.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Structure and Function Analysis of the Mammalian ATP-Binding Cassette Transporters, ABCB1 and ABCB4.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Structure and Function Analysis of the Mammalian ATP-Binding Cassette Transporters, ABCB1 and ABCB4.

    View/Open
    M Nicolaou PhD.pdf (8.138Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Mammalian ABC (ATP-binding cassette) transporters are integral membrane proteins that translocate allocrites across biological membranes using ATP as a substrate. ABCB1 is a polyspecific efflux pump which can confer multidrug resistance in cancer. ABCB1 is also expressed in a variety of normal tissues where it functions to prevent the accumulation of toxic allocrites. Direct inhibition of ABCB1 can therefore have detrimental effects on patients. Identification of ABCB1-interacting partners that influence trafficking or function would therefore provide alternative targets for therapy which may be cell- or tissue-type specific. The “split-ubiquitin” yeast two-hybrid system, that can detect protein:protein interactions at the plasma membrane, was used to screen for ABCB1-interactors in a human liver library. All candidates isolated from the screen interacted with ABCB1 in a non-specific manner when subjected to strict testing. ABCB4, a close relative of ABCB1, is expressed primarily at the hepatocyte canalicular membrane where it flops phosphatidylcholine (PC) into the outer leaflet for extraction by bile salts. Many ABCB4 non-synonymous mutations have been linked to cholestatic liver diseases in humans, but data confirming an impact on ABCB4 function is lacking. Transient expression of wild-type (WT) ABCB4 in tissue culture has proved difficult because the protein is toxic to HEK293T cells. However, co-expression of the phosphatidylserine flippase ATP8B1 (FIC1) and its accessory protein CDC50A allowed the cells to tolerate ABCB4. To investigate the impact of SNPs on ABCB4 function, equivalent changes were introduced into the ABCB4 cDNA for transient expression in the presence or absence of ATP8B1/CDC50A. ABCB4 expression and targeting to the plasma membrane were monitored by western analysis and confocal microscopy, respectively, and, by “feeding” the transfected cells [methyl-3H]choline, PC efflux to added bile salt acceptor was measured. By thus mimicking the situation at the canalicular membrane I report the preliminary characterisation of nine variants of ABCB4 that have been linked to cholestatic liver disease.
    Authors
    Nicolaou, Michael
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8560
    Collections
    • Theses [3711]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.