Show simple item record

dc.contributor.authorFayaz, M
dc.contributor.authorYi, W
dc.contributor.authorLiu, Y
dc.contributor.authorNallanathan, A
dc.date.accessioned2021-07-23T10:07:16Z
dc.date.available2021-07-23T10:07:16Z
dc.date.issued2021-06-01
dc.identifier.issn1536-1276
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/73208
dc.description.abstractGrant-free non-orthogonal multiple access (GFNOMA) is a potential multiple access framework for short-packet internet-of-things (IoT) networks to enhance connectivity. However, the resource allocation problem in GF-NOMA is challenging due to the absence of closed-loop power control. We design a prototype of transmit power pool (PP) to provide open-loop power control. IoT users acquire their transmit power in advance from this prototype PP solely according to their communication distances. Firstly, a multi-agent deep Q-network (DQN) aided GF-NOMA algorithm is proposed to determine the optimal transmit power levels for the prototype PP. More specifically, each IoT user acts as an agent and learns a policy by interacting with the wireless environment that guides them to select optimal actions. Secondly, to prevent the Q-learning model overestimation problem, double DQN (DDQN) based GF-NOMA algorithm is proposed. Numerical results confirm that the DDQN based algorithm finds out the optimal transmit power levels that form the PP. Comparing with the conventional online learning approach, the proposed algorithm with the prototype PP converges faster under changing environments due to limiting the action space based on previous learning. The considered GF-NOMA system outperforms the networks with fixed transmission power, namely all the users have the same transmit power and the traditional GF with orthogonal multiple access techniques, in terms of throughput.en_US
dc.format.extent1 - 1
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Wireless Communications
dc.rightsThis item is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.titleTransmit Power Pool Design for Grant-Free NOMA-IoT Networks via Deep Reinforcement Learningen_US
dc.typeArticleen_US
dc.rights.holder© 2021, The Author(s)
dc.identifier.doi10.1109/twc.2021.3086762
pubs.issue99en_US
pubs.notesNot knownen_US
pubs.volumePPen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

This item is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Except where otherwise noted, this item's license is described as This item is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.