• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Biologically inspired, self organizing communication networks. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Biologically inspired, self organizing communication networks.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Biologically inspired, self organizing communication networks.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Biologically inspired, self organizing communication networks.

    View/Open
    HAMOUDABiologicallyInspired2011.pdf (4.613Mb)
    Metadata
    Show full item record
    Abstract
    The problem of energy-efficient, reliable, accurate and self-organized target tracking in Wireless Sensor Networks (WSNs) is considered for sensor nodes with limited physical resources and abrupt manoeuvring mobile targets. A biologically inspired, adaptive multi-sensor scheme is proposed for collaborative Single Target Tracking (STT) and Multi-Target Tracking (MTT). Behavioural data obtained while tracking the targets including the targets’ previous locations is recorded as metadata to compute the target sampling interval, target importance and local monitoring interval so that tracking continuity and energy-efficiency are improved. The subsequent sensor groups that track the targets are selected proactively according to the information associated with the predicted target location probability such that the overall tracking performance is optimized or nearly-optimized. One sensor node from each of the selected groups is elected as a main node for management operations so that energy efficiency and load balancing are improved. A decision algorithm is proposed to allow the “conflict” nodes that are located in the sensing areas of more than one target at the same time to decide their preferred target according to the target importance and the distance to the target. A tracking recovery mechanism is developed to provide the tracking reliability in the event of target loss. The problem of task mapping and scheduling in WSNs is also considered. A Biological Independent Task Allocation (BITA) algorithm and a Biological Task Mapping and Scheduling (BTMS) algorithm are developed to execute an application using a group of sensor nodes. BITA, BTMS and the functional specialization of the sensor groups in target tracking are all inspired from biological behaviours of differentiation in zygote formation. Simulation results show that compared with other well-known schemes, the proposed tracking, task mapping and scheduling schemes can provide a significant improvement in energy-efficiency and computational time, whilst maintaining acceptable accuracy and seamless tracking, even with abrupt manoeuvring targets.
    Authors
    Hamouda, Yousef Elabd Mohammad
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/709
    Collections
    • Theses [3321]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.