Show simple item record

dc.contributor.authorChiesa, M
dc.contributor.authorSedar, R
dc.contributor.authorAntichi, G
dc.contributor.authorBorokhovich, M
dc.contributor.authorKamisinski, A
dc.contributor.authorNikolaidis, G
dc.contributor.authorSchmid, S
dc.date.accessioned2021-02-04T10:37:55Z
dc.date.available2021-02-04T10:37:55Z
dc.date.issued2021
dc.identifier.issn1063-6692
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/70106
dc.description.abstractHighly dependable communication networks usually rely on some kind of Fast Re-Route (FRR) mechanism which allows to quickly re-route traffic upon failures, entirely in the data plane. This paper studies the design of FRR mechanisms for emerging reconfigurable switches. Our main contribution is an FRR primitive for programmable data planes, PURR, which provides low failover latency and high switch throughput, by avoiding packet recirculation. PURR tolerates multiple concurrent failures and comes with minimal memory requirements, ensuring compact forwarding tables, by unveiling an intriguing connection to classic ``string theory'' (i.e., stringology), and in particular, the shortest common supersequence problem. PURR is well-suited for high-speed match-action forwarding architectures (e.g., PISA) and supports the implementation of a broad variety of FRR mechanisms. Our simulations and prototype implementation (on an FPGA and a Tofino switch) show that PURR improves TCAM memory occupancy by a factor of 1.5x-10.8x compared to a naïve encoding when implementing state-of-the-art FRR mechanisms. PURR also improves the latency and throughput of datacenter traffic up to a factor of 2.8x-5.5x and 1.2x-2x, respectively, compared to approaches based on recirculating packets.en_US
dc.format.extent1 - 14
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofIEEE/ACM Transactions on Networking
dc.titleFast ReRoute on Programmable Switchesen_US
dc.typeArticleen_US
dc.rights.holder© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.identifier.doi10.1109/tnet.2020.3045293
pubs.notesNot knownen_US
pubs.publication-statusPublisheden_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record