• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Carotid atherosclerotic plaque characterisation by measurement of ultrasound sound speed in vitro at high frequency, 20 MHz 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Carotid atherosclerotic plaque characterisation by measurement of ultrasound sound speed in vitro at high frequency, 20 MHz
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Carotid atherosclerotic plaque characterisation by measurement of ultrasound sound speed in vitro at high frequency, 20 MHz
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Carotid atherosclerotic plaque characterisation by measurement of ultrasound sound speed in vitro at high frequency, 20 MHz

    View/Open
    BREWINCarotidAtherosclerotic2010.pdf (2.561Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    The first part of the study was to characterise the acoustic properties of an IEC agar-based tissue mimicking material (TMM) at ultrasound frequencies centred around 20 MHz. The TMM acoustic properties measured were the amplitude attenuation coefficient (dB cm-1MHz-1), the sound speed (ms-1) and the backscattered power spectral density characteristics of spectral slope (dB MHz-1), y-axis intercept (dB) and reflected power (dB). The acoustic properties were measured over a temperature range of 22 - 37oC. Both the attenuation coefficient and sound speed, both group and phase, showed good agreement with the expected values of 0.5 dB cm-1 MHz-1 and 1540 ms-1 respectively with average values of 0.49 dB cm-1MHz-1 (st.dev. ± 0.03) and 1541.9 ms-1 (st.dev. ± 8.5). Overall, this non-commercial agar-based TMM was shown to perform as expected at the higher frequency range of 17-23 MHz and was seen to retain its acoustic properties of attenuation and speed of sound over a three year period. For the second part of the study, composite sound speed was measured in carotid plaque embedded in TMM. The IEC TMM was adapted to a clear agar gel. The contour maps from the attenuation plots were used to match the composite sound speed data to the photographic mask of plaque outline and thus the histological data. By solution of sets of simultaneous equations using a matrix inversion, the individual speed values for five plaque components were derived; TMM, elastin, fibrous/collagen, calcification and lipid. The results for derived sound speed in the adapted TMM were consistently close to the expected value of soft tissue, 1540 ms-1. The fibrous tissue showed a mean value of 1584 ms-1 at body temperature, 37oC. The derived sound speeds for elastic and lipid exhibited large inter-quartile ranges. The calcification had a significantly higher sound speed than the other plaque components at 1760 - 2000 ms-1.
    Authors
    Brewin, Mark Paul
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/699
    Collections
    • Theses [3321]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.