• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Probabilistic retrieval models - relationships, context-specific application, selection and implementation 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Probabilistic retrieval models - relationships, context-specific application, selection and implementation
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Probabilistic retrieval models - relationships, context-specific application, selection and implementation
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Probabilistic retrieval models - relationships, context-specific application, selection and implementation

    View/Open
    WANGProbabilisticRetrieval2011.pdf (1.479Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Retrieval models are the core components of information retrieval systems, which guide the document and query representations, as well as the document ranking schemes. TF-IDF, binary independence retrieval (BIR) model and language modelling (LM) are three of the most influential contemporary models due to their stability and performance. The BIR model and LM have probabilistic theory as their basis, whereas TF-IDF is viewed as a heuristic model, whose theoretical justification always fascinates researchers. This thesis firstly investigates the parallel derivation of BIR model, LM and Poisson model, wrt event spaces, relevance assumptions and ranking rationales. It establishes a bridge between the BIR model and LM, and derives TF-IDF from the probabilistic framework. Then, the thesis presents the probabilistic logical modelling of the retrieval models. Various ways of how to estimate and aggregate probability, and alternative implementation to nonprobabilistic operator are demonstrated. Typical models have been implemented. The next contribution concerns the usage of of context-specific frequencies, i.e., the frequencies counted based on assorted element types or within different text scopes. The hypothesis is that they can help to rank the elements in structured document retrieval. The thesis applies context-specific frequencies on term weighting schemes in these models, and the outcome is a generalised retrieval model with regard to both element and document ranking. The retrieval models behave differently on the same query set: for some queries, one model performs better, for other queries, another model is superior. Therefore, one idea to improve the overall performance of a retrieval system is to choose for each query the model that is likely to perform the best. This thesis proposes and empirically explores the model selection method according to the correlation of query feature and query performance, which contributes to the methodology of dynamically choosing a model. In summary, this thesis contributes a study of probabilistic models and their relationships, the probabilistic logical modelling of retrieval models, the usage and effect of context-specific frequencies in models, and the selection of retrieval models.
    Authors
    Wang, Jun
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/655
    Collections
    • Theses [3321]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.