Show simple item record

dc.contributor.authorBRAY, JN
dc.identifier.citationBray, J., Cai, Q., Cameron, P., Spiga, P. and Zhang, H. (2019). The Hall–Paige conjecture, and synchronization for affine and diagonal groups. Journal of Algebra. [online] Available at: [Accessed 13 Mar. 2019].en_US
dc.description.abstractThe Hall–Paige conjecture asserts that a finite group has a complete mapping if and only if its Sylow subgroups are not cyclic. The conjecture is now proved, and one aim of this paper is to document the final step in the proof (for the sporadic simple group ). We apply this result to prove that primitive permutation groups of simple diagonal type with three or more simple factors in the socle are non-synchronizing. We also give the simpler proof that, for groups of affine type, or simple diagonal type with two socle factors, synchronization and separation are equivalent. Synchronization and separation are conditions on permutation groups which are stronger than primitivity but weaker than 2-homogeneity, the second of these being stronger than the first. Empirically it has been found that groups which are synchronizing but not separating are rather rare. It follows from our results that such groups must be primitive of almost simple type.en_US
dc.relation.ispartofJournal of Algebra
dc.titleThe Hall--Paige conjecture, and synchronization for affine and diagonal groups Journal of Algebraen_US
dc.rights.holder© 2019 Elsevier Inc.
pubs.notesNot knownen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record