Show simple item record

dc.contributor.authorMayrhofer, M
dc.contributor.authorDe Laere, B
dc.contributor.authorWhitington, T
dc.contributor.authorVan Oyen, P
dc.contributor.authorGhysel, C
dc.contributor.authorAmpe, J
dc.contributor.authorOst, P
dc.contributor.authorDemey, W
dc.contributor.authorHoekx, L
dc.contributor.authorSchrijvers, D
dc.contributor.authorBrouwers, B
dc.contributor.authorLybaert, W
dc.contributor.authorEveraert, E
dc.contributor.authorDe Maeseneer, D
dc.contributor.authorStrijbos, M
dc.contributor.authorBols, A
dc.contributor.authorFransis, K
dc.contributor.authorOeyen, S
dc.contributor.authorvan Dam, P-J
dc.contributor.authorVan den Eynden, G
dc.contributor.authorRutten, A
dc.contributor.authorAly, M
dc.contributor.authorNordström, T
dc.contributor.authorVan Laere, S
dc.contributor.authorRantalainen, M
dc.contributor.authorRajan, P
dc.contributor.authorEgevad, L
dc.contributor.authorUllén, A
dc.contributor.authorYachnin, J
dc.contributor.authorDirix, L
dc.contributor.authorGrönberg, H
dc.contributor.authorLindberg, J
dc.identifier.citationMayrhofer, M., et al. (2018). "Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis." Genome Medicine 10(1): 85.en_US
dc.descriptionThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en_US
dc.description.abstractBACKGROUND: There are multiple existing and emerging therapeutic avenues for metastatic prostate cancer, with a common denominator, which is the need for predictive biomarkers. Circulating tumor DNA (ctDNA) has the potential to cost-efficiently accelerate precision medicine trials to improve clinical efficacy and diminish costs and toxicity. However, comprehensive ctDNA profiling in metastatic prostate cancer to date has been limited. METHODS: A combination of targeted and low-pass whole genome sequencing was performed on plasma cell-free DNA and matched white blood cell germline DNA in 364 blood samples from 217 metastatic prostate cancer patients. RESULTS: ctDNA was detected in 85.9% of baseline samples, correlated to line of therapy and was mirrored by circulating tumor cell enumeration of synchronous blood samples. Comprehensive profiling of the androgen receptor (AR) revealed a continuous increase in the fraction of patients with intra-AR structural variation, from 15.4% during first-line metastatic castration-resistant prostate cancer therapy to 45.2% in fourth line, indicating a continuous evolution of AR during the course of the disease. Patients displayed frequent alterations in DNA repair deficiency genes (18.0%). Additionally, the microsatellite instability phenotype was identified in 3.81% of eligible samples (≥ 0.1 ctDNA fraction). Sequencing of non-repetitive intronic and exonic regions of PTEN, RB1, and TP53 detected biallelic inactivation in 47.5%, 20.3%, and 44.1% of samples with ≥ 0.2 ctDNA fraction, respectively. Only one patient carried a clonal high-impact variant without a detectable second hit. Intronic high-impact structural variation was twice as common as exonic mutations in PTEN and RB1. Finally, 14.6% of patients presented false positive variants due to clonal hematopoiesis, commonly ignored in commercially available assays. CONCLUSIONS: ctDNA profiles appear to mirror the genomic landscape of metastatic prostate cancer tissue and may cost-efficiently provide somatic information in clinical trials designed to identify predictive biomarkers. However, intronic sequencing of the interrogated tumor suppressors challenges the ubiquitous focus on coding regions and is vital, together with profiling of synchronous white blood cells, to minimize erroneous assignments which in turn may confound results and impede true associations in clinical trials.en_US
dc.description.sponsorshipThe Belgian Foundation Against Cancer (grant number C/2014/227); Kom op tegen Kanker (Stand up to Cancer), the Flemish Cancer Society (grant number 00000000116000000206); Royal College of Surgeons/Cancer Research UK (C19198/A1533); The Cancer Research Funds of Radiumhemmet, through the PCM program at KI (grant number 163012); The Erling-Persson family foundation (grant number 4-2689-2016); the Swedish Research Council (grant number K2010-70X-20430-04-3), and the Swedish Cancer Foundation (grant number 09-0677).en_US
dc.format.extent85 - ?
dc.publisherBioMed Centralen_US
dc.relation.ispartofGenome Med
dc.rightsCreative Commons Attribution License
dc.rightsAttribution 3.0 United States*
dc.subjectCirculating tumor DNAen_US
dc.subjectClonal hematopoiesisen_US
dc.subjectMetastatic prostate canceren_US
dc.subjectMicrosatellite instabilityen_US
dc.subjectStructural rearrangementen_US
dc.titleCell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis.en_US
dc.rights.holder2018. The authors
pubs.notesNot knownen_US
pubs.publication-statusPublished onlineen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution License
Except where otherwise noted, this item's license is described as Creative Commons Attribution License