Study and miniaturisation of antennas for ultra wideband communication systems
Metadata
Show full item recordAbstract
Wireless communications have been growing with an astonishing rate over the past
few years and wireless terminals for future applications are required to provide
diverse services. This rising demand prompts the needs for antennas able to cover
multiple bandwidths or an ultrawide bandwidth for various systems.
Since the release by the Federal Communications Commission (FCC) of a bandwidth
of 7.5 GHz (from 3.1 GHz to 10.6 GHz) for ultra wideband (UWB) wireless
communications, UWB has been rapidly evolving as a potential wireless technology
and UWB antennas have consequently drawn more and more attention from both
academia and industries worldwide.
Unlike traditional narrow band antennas, design and analysis of UWB antennas are
facing more challenges and difficulties. A competent UWB antenna should be
capable of operating over an ultra wide bandwidth as assigned by the FCC. At the
same time, a small and compact antenna size is highly desired, due to the integration
requirement of entire UWB systems. Another key requirement of UWB antennas is
the good time domain behaviour, i.e. a good impulse response with minimal
distortion.
This thesis focuses on UWB antenna miniaturisation and analysis. Studies have been
undertaken to cover the aspects of UWB fundamentals and antenna theory. Extensive
investigations are also conducted on three different types of miniaturised UWB
antennas.
5
The first type of miniaturised UWB antenna studied in this thesis is the loaded
orthogonal half disc monopole antenna. An inductive load is introduced to broaden
the impedance bandwidth as well as the pattern bandwidth, in other words, an
equivalent size reduction is realised.
The second type of miniaturised UWB antenna is the printed half disc monopole
antenna. By simply halving the original antenna and tuning the width of the coplanar
ground plane, a significant more than 50% size reduction is achieved.
The third type of miniaturised UWB antenna is the printed quasi-self-complementary
antenna. By exploiting a quasi-self-complementary structure and a built-in matching
section, a small and compact antenna dimension is achieved.
The performances and characteristics of the three types of miniaturised UWB
antennas are studied both numerically and experimentally and the design parameters
for achieving optimal operation of the antennas are also analysed extensively in order
to understand the antenna operations.
Also, time domain performance of the Coplanar Waveguide (CPW)-fed disc
monopole antenna is examined in this thesis to demonstrate the importance of time
domain study on UWB antennas.
Over the past few years of my PhD study, I feel honoured and lucky to work with
some of the most prestigious researchers in the Department of Electronic
Engineering, Queen Mary, University of London. I would like to show my most
cordial gratitude to those who have been helping me during the past few years. There
would be no any progress without their generous and sincere support.
First of all, I would like to thank my supervisors Professor Clive Parini and Professor
Xiaodong Chen, for their kind supervision and encouragement. I am impressed by
their notable academic background and profound understanding of the subjects,
which have proved to be immense benefits to me. It has been my great pleasure and
honour to be under their supervision and work with them.
Second of all, I would like to thank Mr John Dupuy for his help in the fabrication
and measurement of antennas I have designed during my PhD study. Also, a special
acknowledgement goes to all of the staff for all the assistance throughout my
graduate program.
Authors
Guo, LuCollections
- Theses [3831]