• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Making music through real-time voice timbre analysis: machine learning and timbral control 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Making music through real-time voice timbre analysis: machine learning and timbral control
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Making music through real-time voice timbre analysis: machine learning and timbral control
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Making music through real-time voice timbre analysis: machine learning and timbral control

    View/Open
    STOWELLMakingMusic2010.pdf (4.130Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    People can achieve rich musical expression through vocal sound { see for example human beatboxing, which achieves a wide timbral variety through a range of extended techniques. Yet the vocal modality is under-exploited as a controller for music systems. If we can analyse a vocal performance suitably in real time, then this information could be used to create voice-based interfaces with the potential for intuitive and ful lling levels of expressive control. Conversely, many modern techniques for music synthesis do not imply any particular interface. Should a given parameter be controlled via a MIDI keyboard, or a slider/fader, or a rotary dial? Automatic vocal analysis could provide a fruitful basis for expressive interfaces to such electronic musical instruments. The principal questions in applying vocal-based control are how to extract musically meaningful information from the voice signal in real time, and how to convert that information suitably into control data. In this thesis we address these questions, with a focus on timbral control, and in particular we develop approaches that can be used with a wide variety of musical instruments by applying machine learning techniques to automatically derive the mappings between expressive audio input and control output. The vocal audio signal is construed to include a broad range of expression, in particular encompassing the extended techniques used in human beatboxing. The central contribution of this work is the application of supervised and unsupervised machine learning techniques to automatically map vocal timbre to synthesiser timbre and controls. Component contributions include a delayed decision-making strategy for low-latency sound classi cation, a regression-tree method to learn associations between regions of two unlabelled datasets, a fast estimator of multidimensional di erential entropy and a qualitative method for evaluating musical interfaces based on discourse analysis.
    Authors
    Stowell, Dan
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/412
    Collections
    • Theses [3709]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.