Show simple item record

dc.contributor.authorSanna, Michele
dc.date.accessioned2017-10-09T13:24:11Z
dc.date.available2017-10-09T13:24:11Z
dc.date.issued05/05/2014
dc.date.submitted2017-10-09T12:10:28.372Z
dc.identifier.citationSanna, M. 2014. Scalable Video Streaming with Prioritised Network Coding on End-System Overlays. Queen Mary University of Londonen_US
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/27208
dc.descriptionPhDen_US
dc.description.abstractDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components.en_US
dc.language.isoenen_US
dc.publisherQueen Mary University of London
dc.subjectPhysicsen_US
dc.subjectAstronomyen_US
dc.subjectString Theoryen_US
dc.titleScalable Video Streaming with Prioritised Network Coding on End-System Overlaysen_US
dc.typeThesisen_US
dc.rights.holderThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses [4222]
    Theses Awarded by Queen Mary University of London

Show simple item record