Scalable Video Streaming with Prioritised Network Coding on End-System Overlays
Abstract
Distribution over the internet is destined to become a standard approach for live broadcasting
of TV or events of nation-wide interest. The demand for high-quality live video
with personal requirements is destined to grow exponentially over the next few years. Endsystem
multicast is a desirable option for relieving the content server from bandwidth bottlenecks
and computational load by allowing decentralised allocation of resources to the users
and distributed service management. Network coding provides innovative solutions for a
multitude of issues related to multi-user content distribution, such as the coupon-collection
problem, allocation and scheduling procedure. This thesis tackles the problem of streaming
scalable video on end-system multicast overlays with prioritised push-based streaming.
We analyse the characteristic arising from a random coding process as a linear channel
operator, and present a novel error detection and correction system for error-resilient decoding,
providing one of the first practical frameworks for Joint Source-Channel-Network
coding. Our system outperforms both network error correction and traditional FEC coding
when performed separately. We then present a content distribution system based on endsystem
multicast. Our data exchange protocol makes use of network coding as a way to
collaboratively deliver data to several peers. Prioritised streaming is performed by means
of hierarchical network coding and a dynamic chunk selection for optimised rate allocation
based on goodput statistics at application layer. We prove, by simulated experiments, the
efficient allocation of resources for adaptive video delivery. Finally we describe the implementation
of our coding system. We highlighting the use rateless coding properties, discuss
the application in collaborative and distributed coding systems, and provide an optimised
implementation of the decoding algorithm with advanced CPU instructions. We analyse
computational load and packet loss protection via lab tests and simulations, complementing
the overall analysis of the video streaming system in all its components.
Authors
Sanna, MicheleCollections
- Theses [3651]