Show simple item record

dc.contributor.authorKatsounaros, Anestis
dc.date.accessioned2012-05-25T14:48:54Z
dc.date.available2012-05-25T14:48:54Z
dc.date.issued2012
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/2520
dc.descriptionPhDen_US
dc.description.abstractCarbon nanotubes (CNT) and their applications is a field which has attract a lot of interest in the past two decades. Since the first invention of CNTs in 1991, and in view of utilising nanoantennas, the focus in many laboratories around the world has shifted to trying to lengthen nanotubes longer from nanometers to few centimeters. Eventually this could lead to CNTs’ use in sub-millimeter, millimiter wave and microwave antenna applications. In this thesis, fundamental properties of carbon nanotube films are investigated, and some applications such as the use of CNTs as absorbers or CNT doped liquid crystals are considered. The concept of frequency tunable patch antennas is also presented. Simulation and measurement results of the liquid crystal based antenna show that frequency tuning is possible, through the use of a liquid crystal cell as a substrate. Additionally, greater tuning can be achieved using liquid crystals with higher dielectric anisotropy at microwave frequencies. This can be achieved by using CNT doped liquid crystals. As mentioned, microwave and terahertz measurements of vertically aligned carbon nanotube arrays placed on the top surface of a rectangular silicon substrate are presented. The S-parameters are calculated allowing the extraction of the complex permittivity, permeability and conductivity of the samples. Theoretical models are being introduced delineating the behaviour of the multi-walled nanotube (MWNT) samples. The material properties of this film provide useful data for potential microwave and terahertz applications such as absorbers. Finally, finite-difference time-domain (FDTD) modelling of CNTs is introduced, verifying the measurements that have been performed, confirming that CNT arrays can be highly absorptive. A novel estimation of the permittivity and permeability of an individual carbon nanotube is presented and a periodic structure is simulated, under periodic boundary conditions, consisting of solid anisotropic cylinders. In addition, the optical properties of vertically aligned carbon nanotube (VACNT) arrays, when the periodicity is both within the sub-wavelength and wavelength iii regime are calculated. The effect of geometrical parameters of the tube such as length, diameter and inter-tube distance between two consecutive tubes are also examined.en_US
dc.language.isoenen_US
dc.publisherQueen Mary University of London
dc.subjectOvarian cancer
dc.subjecthigh-grade serous ovarian canceren_US
dc.subjectchemokinesen_US
dc.subjectCD68+ macrophagesen_US
dc.subjectomental metastasesen_US
dc.titleCharacterization of multi-wall carbon nanotubes and their applicationsen_US
dc.typeThesisen_US
dc.rights.holderThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses [4125]
    Theses Awarded by Queen Mary University of London

Show simple item record