Show simple item record

dc.contributor.authorWang, M
dc.contributor.authorYu, Q
dc.contributor.authorXu, Y
dc.contributor.authorLi, N
dc.contributor.authorWang, J
dc.contributor.authorCao, B
dc.contributor.authorWang, L
dc.contributor.authorAvital, EJ
dc.date.accessioned2024-05-23T07:55:32Z
dc.date.available2024-05-23T07:55:32Z
dc.date.issued2024-05-07
dc.identifier.citationWang, M.; Yu, Q.; Xu, Y.; Li, N.; Wang, J.; Cao, B.; Wang, L.; Avital, E.J. A Numerical Study on the Influence of Riparian Vegetation Patch on the Transportation of Suspended Sediment in a U-Bend Channel Flow. Fluids 2024, 9, 109. https://doi.org/10.3390/fluids9050109en_US
dc.identifier.issn2311-5521
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/97020
dc.description.abstractBend sections are ubiquitous in natural sandy river systems. This study employs Computational Fluid Dynamics–Discrete Phase Model (CFD-DPM) methodology to analyze particle transport dynamics in U-bend channel flows, focusing on the distinctions between partially vegetated (Case No.1) and non-vegetated (Case No.2) scenarios. The research aims to unravel the intricate relationships among bending channel-induced secondary flow, vegetation blockage, and particle aggregation, employing both quantitative and qualitative approaches. (I) The key findings reveal that vegetation near the inner walls of curved channels markedly diminishes the intensity of secondary circulation. This reduction in circulation intensity is observed not only within vegetated areas but also extends to adjacent non-vegetated zones. Additionally, the study identifies a close correlation between vertical vortices and particle distribution near the channel bed. While particle distribution generally aligns with the vortices’ margin, dynamic patch-scale eddies near vegetation patches induce deviations, creating wave-like patterns in particle distribution. (II) The application of the Probability Density Function (PDF) provides insights into the radius-wise particle distribution. In non-vegetated channels, particle distribution is primarily influenced by secondary flow and boundary layers. In contrast, the presence of vegetation leads to a complex mixing layer, altering the particle distribution pattern and maximizing PDF values in non-vegetated free flow subzones. (III) Furthermore, the research quantifies spatial–temporal sediment heterogeneity through PDF variance. The findings demonstrate that variance in non-vegetated channels increases towards the outer wall in bending regions. Vegetation-induced turbulence causes higher variance, particularly in the mixing layer subzone, underscoring the significance of eddy size in sediment redistribution. (IV) The study of vertical concentration profiles in vegetated U-bend channels offers additional insights, while secondary flow in non-vegetated channels facilitates upward sediment transport and vegetation presence, although increasing the Turbulent Kinetic Energy (TKE), restricts channel space, and impedes secondary flow, thereby reducing vertical particle suspension. Sediment concentrations are found to be higher in the lower layers of vegetated bends, contrary to the pattern in non-vegetated bends. These findings highlight the complex interplay between vegetation, secondary flow, and sediment transport, illustrating the reduced effectiveness of secondary flow in promoting vertical particle transportation in bending channels due to the vegetation obstruction.en_US
dc.format.extent109 - ?
dc.publisherMDPIen_US
dc.relation.ispartofFluids
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.titleA Numerical Study on the Influence of Riparian Vegetation Patch on the Transportation of Suspended Sediment in a U-Bend Channel Flowen_US
dc.typeArticleen_US
dc.rights.holder© 2024 by the authors. Licensee MDPI, Basel, Switzerland.
dc.identifier.doi10.3390/fluids9050109
pubs.issue5en_US
pubs.notesNot knownen_US
pubs.volume9en_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
qmul.funderUK Turbulence Consortium::Engineering and Physical Sciences Research Councilen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record