Show simple item record

dc.contributor.authorPirabul, K
dc.contributor.authorZhao, Q
dc.contributor.authorSunahiro, S
dc.contributor.authorPan, Z-Z
dc.contributor.authorYoshii, T
dc.contributor.authorHayasaka, Y
dc.contributor.authorHoi-Sing Pang, E
dc.contributor.authorCrespo-Otero, R
dc.contributor.authorDi Tommaso, D
dc.contributor.authorKyotani, T
dc.contributor.authorNishihara, H
dc.date.accessioned2024-04-26T09:47:27Z
dc.date.available2024-04-26T09:47:27Z
dc.date.issued2024
dc.identifier.issn1463-9262
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/96467
dc.description.abstractTemplate-assisted chemical vapor deposition (CVD) is a promising approach for fabricating nanoporous materials based on graphene walls. Among conventional metal oxide templates, CaO, produced through the thermal decomposition of CaCO3, offers improved environmental sustainability and lower production costs, thereby potentially making it a viable candidate for green template materials. Nevertheless, the underlying reaction mechanisms of the interaction on the CaO surface during the CVD process remain indeterminate, giving rise to challenges in regulating graphene formation and obtaining high-quality materials. In this work, a comprehensive experimental–theoretical investigation has unveiled the CVD mechanism on CaO. CaO exhibits efficient catalytic activity in the dissociation of CH4, thereby facilitating a thermodynamically favorable conversion of CH4 to graphene. These findings highlight the potential of using CaO as a substrate for graphene growth, combining both sustainability and cost-effectiveness. When the shell-like graphene layer deposited on CaO particles is released through the dissolution of CaO with HCl, the resulting nanoporous graphene-based materials can be readily compacted by the capillary force of the liquid upon drying. The folded surfaces, however, can become available for electric double-layer capacitance via electrochemical exfoliation under a low applied potential (<1.2 V vs. Ag/AgClO4).en_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.ispartofGreen Chemistry
dc.rightsThis article is distributed under the terms of the CC-BY-NC Licence. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
dc.titleThermodynamically Favorable Route to the Synthesis of Nanoporous Graphene Templated on CaO via Chemical Vapor Depositionen_US
dc.typeArticleen_US
dc.rights.holder© 2023 The Author(s). Published by the Royal Chemical Society
dc.identifier.doi10.1039/d4gc00116h
pubs.notesNot knownen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record