• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    ACCURATE AND FAST STEREO VISION 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • ACCURATE AND FAST STEREO VISION
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • ACCURATE AND FAST STEREO VISION
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ACCURATE AND FAST STEREO VISION

    View/Open
    PhD (5.860Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Stereo vision from short-baseline image pairs is one of the most active research fields in computer vision. The estimation of dense disparity maps from stereo image pairs is still a challenging task and there is further space for improving accuracy, minimizing the computational cost and handling more efficiently outliers, low-textured areas, repeated textures, disparity discontinuities and light variations. This PhD thesis presents two novel methodologies relating to stereo vision from short-baseline image pairs: I. The first methodology combines three different cost metrics, defined using colour, the CENSUS transform and SIFT (Scale Invariant Feature Transform) coefficients. The selected cost metrics are aggregated based on an adaptive weights approach, in order to calculate their corresponding cost volumes. The resulting cost volumes are merged into a combined one, following a novel two-phase strategy, which is further refined by exploiting semi-global optimization. A mean-shift segmentation-driven approach is exploited to deal with outliers in the disparity maps. Additionally, low-textured areas are handled using disparity histogram analysis, which allows for reliable disparity plane fitting on these areas. II. The second methodology relies on content-based guided image filtering and weighted semi-global optimization. Initially, the approach uses a pixel-based cost term that combines gradient, Gabor-Feature and colour information. The pixel-based matching costs are filtered by applying guided image filtering, which relies on support windows of two different sizes. In this way, two filtered costs are estimated for each pixel. Among the two filtered costs, the one that will be finally assigned to each pixel, depends on the local image content around this pixel. The filtered cost volume is further refined by exploiting weighted semi-global optimization, which improves the disparity accuracy. The handling of the occluded areas is enhanced by incorporating a straightforward and time efficient scheme. The evaluation results show that both methodologies are very accurate, since they handle efficiently low-textured/occluded areas and disparity discontinuities. Additionally, the second approach has very low computational complexity. Except for the aforementioned two methodologies that use as input short-baseline image pairs, this PhD thesis presents a novel methodology for generating 3D point clouds of good accuracy from wide-baseline stereo pairs.
    Authors
    Kordelas, Georgios
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/9546
    Collections
    • Theses [3600]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.