Show simple item record

dc.contributor.authorSolís-Lemus, JA
dc.contributor.authorBaptiste, T
dc.contributor.authorBarrows, R
dc.contributor.authorSillett, C
dc.contributor.authorGharaviri, A
dc.contributor.authorRaffaele, G
dc.contributor.authorRazeghi, O
dc.contributor.authorStrocchi, M
dc.contributor.authorSim, I
dc.contributor.authorKotadia, I
dc.contributor.authorBodagh, N
dc.contributor.authorO'Hare, D
dc.contributor.authorO'Neill, M
dc.contributor.authorWilliams, SE
dc.contributor.authorRoney, C
dc.contributor.authorNiederer, S
dc.date.accessioned2024-02-02T09:36:55Z
dc.date.available2023-05-03
dc.date.available2024-02-02T09:36:55Z
dc.date.issued2023-08
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/94400
dc.description.abstractThis work presents an open-source software pipeline to create patient-specific left atrial models with fibre orientations and a fibrDEFAULTosis map, suitable for electrophysiology simulations, and quantifies the intra and inter observer reproducibility of the model creation. The semi-automatic pipeline takes as input a contrast enhanced magnetic resonance angiogram, and a late gadolinium enhanced (LGE) contrast magnetic resonance (CMR). Five operators were allocated 20 cases each from a set of 50 CMR datasets to create a total of 100 models to evaluate inter and intra-operator variability. Each output model consisted of: (1) a labelled surface mesh open at the pulmonary veins and mitral valve, (2) fibre orientations mapped from a diffusion tensor MRI (DTMRI) human atlas, (3) fibrosis map extracted from the LGE-CMR scan, and (4) simulation of local activation time (LAT) and phase singularity (PS) mapping. Reproducibility in our pipeline was evaluated by comparing agreement in shape of the output meshes, fibrosis distribution in the left atrial body, and fibre orientations. Reproducibility in simulations outputs was evaluated in the LAT maps by comparing the total activation times, and the mean conduction velocity (CV). PS maps were compared with the structural similarity index measure (SSIM). The users processed in total 60 cases for inter and 40 cases for intra-operator variability. Our workflow allows a single model to be created in 16.72 ± 12.25 min. Similarity was measured with shape, percentage of fibres oriented in the same direction, and intra-class correlation coefficient (ICC) for the fibrosis calculation. Shape differed noticeably only with users' selection of the mitral valve and the length of the pulmonary veins from the ostia to the distal end; fibrosis agreement was high, with ICC of 0.909 (inter) and 0.999 (intra); fibre orientation agreement was high with 60.63% (inter) and 71.77% (intra). The LAT showed good agreement, where the median ± IQR of the absolute difference of the total activation times was 2.02 ± 2.45 ms for inter, and 1.37 ± 2.45 ms for intra. Also, the average ± sd of the mean CV difference was -0.00404 ± 0.0155 m/s for inter, and 0.0021 ± 0.0115 m/s for intra. Finally, the PS maps showed a moderately good agreement in SSIM for inter and intra, where the mean ± sd SSIM for inter and intra were 0.648 ± 0.21 and 0.608 ± 0.15, respectively. Although we found notable differences in the models, as a consequence of user input, our tests show that the uncertainty caused by both inter and intra-operator variability is comparable with uncertainty due to estimated fibres, and image resolution accuracy of segmentation tools.en_US
dc.format.extent107009 - ?
dc.languageeng
dc.publisherElsevieren_US
dc.relation.ispartofComput Biol Med
dc.rightsThis item is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
dc.subjectAtrial imagingen_US
dc.subjectCardiac electrophysiologyen_US
dc.subjectDigital twinsen_US
dc.subjectImage analysisen_US
dc.subjectPatient-specific modellingen_US
dc.subjectReproducibilityen_US
dc.subjectHumansen_US
dc.subjectAtrial Fibrillationen_US
dc.subjectReproducibility of Resultsen_US
dc.subjectHeart Atriaen_US
dc.subjectMagnetic Resonance Imagingen_US
dc.subjectFibrosisen_US
dc.subjectPredictive Value of Testsen_US
dc.titleEvaluation of an open-source pipeline to create patient-specific left atrial models: A reproducibility study.en_US
dc.typeArticleen_US
dc.rights.holder© 2023 The Author(s). Published by Elsevier Ltd.
dc.identifier.doi10.1016/j.compbiomed.2023.107009
pubs.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/37301099en_US
pubs.notesNot knownen_US
pubs.publication-statusPublisheden_US
pubs.volume162en_US
dcterms.dateAccepted2023-05-03
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record