• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Towards the Development of the TPR Scaffold into Novel Biomaterials & Bioswitches. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Towards the Development of the TPR Scaffold into Novel Biomaterials & Bioswitches.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Towards the Development of the TPR Scaffold into Novel Biomaterials & Bioswitches.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Towards the Development of the TPR Scaffold into Novel Biomaterials & Bioswitches.

    View/Open
    Millership_Charlotte_PhD_130715.pdf (36.00Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    TetratricoPeptide Repeats or TPRs are a class of repeat proteins made up of - helices. Each repeat contains 34 amino acids that form a helix-turn-helix motif and is stabilised by short range interactions creating a non-globular fold. Tandem arrays of these repeats form stable superhelical structures. The modular nature of the TPR fold has allowed a series of consensus TPRs (CTPRs) to be designed where the number of repeat units has been varied. We have exploited the modular nature of CTPR proteins in order to create fibres via a bottom-up approach. Using Native Chemical Ligation (NCL) we have been able to trigger specific assembly of monomeric CTPR units to form extended fibrous structures up to microns in length (as viewed by TEM). This reaction proceeds at room temperature and neutral pH, with filaments observed within 12 hours. The equilibrium unfolding of CTPRs is prone to the population of partially folded states. Through studying the stability of a series of deletion mutants and using a Heteropolymer Ising model to analyse the unfolding data we have been able to design a CTPR with a conformational ‘switch’. This new CTPR was designed to populate a stable intermediate, with an exposed dimerisation interface, under certain conditions. When this new construct was analysed using 2D NMR and CD spectroscopy, it was found to selectively unfold its C-terminal -helix at a specific concentration of GuHCl. Our aim is to develop a system in which a ‘switching’ CTPR is used as a sensor that, when triggered by environmental conditions, partially unfolds and oligomerises.
    Authors
    Millership, Charlotte
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/9028
    Collections
    • Theses [3366]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the autho
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.