• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Insights into molecular and functional mechanisms behind inherited heart and skin disorders. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Insights into molecular and functional mechanisms behind inherited heart and skin disorders.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Insights into molecular and functional mechanisms behind inherited heart and skin disorders.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Insights into molecular and functional mechanisms behind inherited heart and skin disorders.

    View/Open
    Nitoiu_Daniela_PhD_070415.pdf (7.355Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Desmosomes are macromolecular, dynamic and adaptable complexes that connect intermediate filaments of neighboring cells in a variety of tissues, generating a large mechanically resilient structure. The importance of maintaining desmosome homeostasis for tissue integrity and optimal organ function has been revealed through the identification of desmosome-associated disorders and mechanistic studies into desmosome regulation. This thesis focuses on inherited skin and heart conditions linked to mutations in desmosomal genes or in genes believed to be implicated in desmosome regulation. Part of this thesis is focused on the molecular analysis and identification of novel desmosomal mutations in patients clinically diagnosed with Arrhythmogenic Right Ventricular Cardiomyopathy, and the genetic diagnosis of patients with hypotrichosis, hypotrichosis and PPK or acral peeling skin syndrome. Patients were analysed using a number of different genetic techniques including custom capture array, HaloPlex targeted resequencing, exome capture and Sanger sequencing. Both novel and previously reported mutations were identified in DSP, DSC2, DSG2, PKP2, DSG4 or CSTA in patients diagnosed with these disorders. The molecular mechanisms behind mutations in the protease inhibitors cystatin A and calpastatin, leading to the skin disorders exfoliative ichthyosis and PLACK syndrome, were also investigated. In vitro analysis, using siRNA-mediated knockdown in the immortalised keratinocyte cell line HaCaT, demonstrated that these mutations, affecting the structure and function of the protease inhibitors, lead to deficient intercellular adhesion, possibly through the indirect regulation of desmosomal complexes through their target proteases.
    Authors
    Nitoiu, Daniela
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8911
    Collections
    • Theses [3371]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.