• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Near-integrable behaviour in a family of discretised rotations 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Near-integrable behaviour in a family of discretised rotations
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Near-integrable behaviour in a family of discretised rotations
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Near-integrable behaviour in a family of discretised rotations

    View/Open
    Reeve-Black, Heather 190514.pdf (2.404Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    We consider a one-parameter family of invertible maps of a twodimensional lattice, obtained by applying round-o to planar rotations. All orbits of these maps are conjectured to be periodic. We let the angle of rotation approach =2, and show that the limit of vanishing discretisation is described by an integrable piecewise-a ne Hamiltonian ow, whereby the plane foliates into families of invariant polygons with an increasing number of sides. Considered as perturbations of the ow, the lattice maps assume a di erent character, described in terms of strip maps: a variant of those found in outer billiards of polygons. Furthermore, the flow is nonlinear (unlike the original rotation), and a suitably chosen Poincar e return map satisfi es a twist condition. The round-o perturbation introduces KAM-type phenomena: we identify the unperturbed curves which survive the perturbation, and show that they form a set of positive density in the phase space. We prove this considering symmetric orbits, under a condition that allows us to obtain explicit values for densities. Finally, we show that the motion at in finity is a dichotomy: there is one regime in which the nonlinearity tends to zero, leaving only the perturbation, and a second where the nonlinearity dominates. In the domains where the nonlinearity remains, numerical evidence suggests that the distribution of the periods of orbits is consistent with that of random dynamics, whereas in the absence of nonlinearity, the fluctuations result in intricate discrete resonant structures.
    Authors
    Reeve-Black, Heather
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8858
    Collections
    • Theses [3827]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.