• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Automatic Music Transcription using Structure and Sparsity 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Automatic Music Transcription using Structure and Sparsity
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Automatic Music Transcription using Structure and Sparsity
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Automatic Music Transcription using Structure and Sparsity

    View/Open
    O'Hanlon, Ken 020514.pdf (1.149Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Automatic Music Transcription seeks a machine understanding of a musical signal in terms of pitch-time activations. One popular approach to this problem is the use of spectrogram decompositions, whereby a signal matrix is decomposed over a dictionary of spectral templates, each representing a note. Typically the decomposition is performed using gradient descent based methods, performed using multiplicative updates based on Non-negative Matrix Factorisation (NMF). The final representation may be expected to be sparse, as the musical signal itself is considered to consist of few active notes. In this thesis some concepts that are familiar in the sparse representations literature are introduced to the AMT problem. Structured sparsity assumes that certain atoms tend to be active together. In the context of AMT this affords the use of subspace modelling of notes, and non-negative group sparse algorithms are proposed in order to exploit the greater modelling capability introduced. Stepwise methods are often used for decomposing sparse signals and their use for AMT has previously been limited. Some new approaches to AMT are proposed by incorporation of stepwise optimal approaches with promising results seen. Dictionary coherence is used to provide recovery conditions for sparse algorithms. While such guarantees are not possible in the context of AMT, it is found that coherence is a useful parameter to consider, affording improved performance in spectrogram decompositions.
    Authors
    O'Hanlon, Ken
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8818
    Collections
    • Theses [3321]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.