• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Theories for Session-based Governance for Large-scale Distributed Systems 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Theories for Session-based Governance for Large-scale Distributed Systems
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Theories for Session-based Governance for Large-scale Distributed Systems
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Theories for Session-based Governance for Large-scale Distributed Systems

    View/Open
    Chen_T-c_Phd_final.pdf (2.856Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Large-scale distributed systems and distributed computing are the pillars of IT infrastructure and society nowadays. Robust theoretical principles for designing, building, managing and understanding the interactive behaviours of such systems need to be explored. A promising approach for establishing such principles is to view the session as the key unit for design, execution and verification. Governance is a general term for verifying whether activities meet the specified requirements and for enforcing safe behaviours among processes. This thesis, based on the asynchronous -calculus and the theory of session types, provides a monitoring framework and a theory for validating specifications, verifying mutual behaviours during runtime, and taking actions when noncompliant behaviours are detected. We explore properties and principles for governing large-scale distributed systems, in which autonomous and heterogeneous system components interact with each other in the network to accomplish application goals. This thesis, incorporating lessons from my participation in a substantial practical project, the Ocean Observatories Initiative (OOI), proposes an asynchronous monitoring framework and the process calculus for dynamically governing the asynchronous interactions among distributed multiple applications. We prove that this monitoring model guarantees the satisfaction of global assertions, and state and prove theorems of local and global safety, transparency, and session fidelity. We also study and introduce the semantic mechanisms for runtime session-based governance and the principles of validation of stateful specifications through capturing the runtime asynchronous interactions.
    Authors
    Chen, Tsu-Chun
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8778
    Collections
    • Theses [3315]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.