• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Interactive video retrieval using implicit user feedback. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Interactive video retrieval using implicit user feedback.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Interactive video retrieval using implicit user feedback.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Interactive video retrieval using implicit user feedback.

    View/Open
    Vrochidis_S_PhD_final.pdf (11.59Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    In the recent years, the rapid development of digital technologies and the low cost of recording media have led to a great increase in the availability of multimedia content worldwide. This availability places the demand for the development of advanced search engines. Traditionally, manual annotation of video was one of the usual practices to support retrieval. However, the vast amounts of multimedia content make such practices very expensive in terms of human effort. At the same time, the availability of low cost wearable sensors delivers a plethora of user-machine interaction data. Therefore, there is an important challenge of exploiting implicit user feedback (such as user navigation patterns and eye movements) during interactive multimedia retrieval sessions with a view to improving video search engines. In this thesis, we focus on automatically annotating video content by exploiting aggregated implicit feedback of past users expressed as click-through data and gaze movements. Towards this goal, we have conducted interactive video retrieval experiments, in order to collect click-through and eye movement data in not strictly controlled environments. First, we generate semantic relations between the multimedia items by proposing a graph representation of aggregated past interaction data and exploit them to generate recommendations, as well as to improve content-based search. Then, we investigate the role of user gaze movements in interactive video retrieval and propose a methodology for inferring user interest by employing support vector machines and gaze movement-based features. Finally, we propose an automatic video annotation framework, which combines query clustering into topics by constructing gaze movement-driven random forests and temporally enhanced dominant sets, as well as video shot classification for predicting the relevance of viewed items with respect to a topic. The results show that exploiting heterogeneous implicit feedback from past users is of added value for future users of interactive video retrieval systems.
    Authors
    Vrochidis, Stefanos
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8729
    Collections
    • Theses [3711]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.