• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Inference following biased coin designs in clinical trials. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Inference following biased coin designs in clinical trials.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Inference following biased coin designs in clinical trials.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Inference following biased coin designs in clinical trials.

    View/Open
    Yeung_W_Y_PhD_final.pdf (828.4Kb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Randomization schemes for two-treatment clinical trials are studied. Theoretical expressions for the power are derived under both complete randomization and Efron’s biased coin design for normal and binary responses. The better the scheme is at balancing the numbers of patients across treatments, the higher the power is. Efron’s biased coin design is more powerful than complete randomization. Normal approximations to the powers are obtained. The power of the adjustable biased coin design is also investigated by simulation. Covariate-adaptive randomization schemes are analysed when either global or marginal balance across cells is sought. By considering a fixed-effects linear model for normal treatment responses with several covariates, an analysis of covariance t test is carried out. Its power is simulated for global and marginal balance, both in the absence and in the presence of interactions between the covariates. Global balancing covariate-adaptive schemes are more efficient when there are interactions between the covariates. Restricted randomization schemes for more than two treatments are then considered. Their asymptotic properties are provided. An adjustable biased coin design is introduced for which assignments are based on the imbalance across treatments. The finitesample properties of the imbalance under these randomization schemes are studied by simulation. Assuming normal treatment responses, the power of the test for treatment differences is also obtained and is highest for the new design. Imbalance properties of complete randomization and centre-stratified permuted block randomization for several treatments are investigated. It is assumed that the patient recruitment process follows a Poisson-gamma model. When the number of centres is large, the imbalance for both schemes is approximately multivariate normal. The power of a test for treatment differences is simulated for normal responses. The loss of power can be compensated for by a small increase in sample size.
    Authors
    Yeung, Wai Yin
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8713
    Collections
    • Theses [3822]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.