Show simple item record

dc.contributor.authorXiong, Hong Yi
dc.date.accessioned2015-09-15T14:52:28Z
dc.date.available2015-09-15T14:52:28Z
dc.date.issued2013-05
dc.identifier.citationXIONG, H.Y. 2013. A Cross Layer Routing Protocol for OFDMA Based Mobile Ad Hoc Networks. Queen Mary University of London.en_US
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/8711
dc.descriptionPhDen_US
dc.description.abstractMobile ad hoc networks are of growing interest because of their unique characteristics and advantages in many practical applications. QoS provision acts as a major challenge in the routing protocol design in the real-world mobile ad hoc networks, especially for the real-time services. OFDM is a new technology which has many advantages over the other modulation schemes. Because of its prominent features, many popular wireless standards have adopted it as physical layer modulation, such as IEEE 802.11 series, WiMAX, 3GPP LTE etc, and it is extended to multiuser environment known as OFDMA. So far none of the existing ad hoc routing protocols fully account for the OFDMA based mobile ad hoc networks. In this thesis, a QoS routing protocol is proposed for OFDMA based mobile ad hoc networks. A signal strength-based sub-channel allocation scheme is proposed in the routing protocol aiming to reduce the signalling overhead and cochannel interference. The performance of the proposed routing protocol is compared with other alternative proposals through simulations using OPNET simulator. Moreover, a partial time synchronization and a null subcarrier based frequency synchronization algorithms are also proposed for OFDMA based ad hoc network to further support and facilitate the proposed sub-channel allocation scheme and routing protocol.en_US
dc.language.isoenen_US
dc.publisherQueen Mary University of Londonen_US
dc.subjectElectronic Engineeringen_US
dc.subjectWireless networksen_US
dc.titleA Cross Layer Routing Protocol for OFDMA Based Mobile Ad Hoc Networks.en_US
dc.typeThesisen_US
dc.rights.holderThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses [3141]
    Theses Awarded by Queen Mary University of London

Show simple item record