• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Coordinate Transformation Based Electromagnetic Design and Applications. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Coordinate Transformation Based Electromagnetic Design and Applications.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Coordinate Transformation Based Electromagnetic Design and Applications.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Coordinate Transformation Based Electromagnetic Design and Applications.

    View/Open
    Tang_W_PhD_final.pdf (10.05Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    The main objective of this thesis is to take one step forward to practical and realisable devices for antenna and microwave engineering, using the technique of discrete coordinate transformation (DCT), which is a practical implementation of the coordinate transformation method. During this thesis, the DCT technique was demonstrated and analysed from the theory, and was proved to provide an all-dielectric approach to design devices under certain conditions. Two schemes were proposed on how to use this technique in a practical design. The first one is to transform an existing device into a flattened profile, meanwhile maintaining its electromagnetic performance. As examples, a flat reflector and a flat lens were created from a parabolic reflector and a convex lens, respectively. The second scheme is to project the propagating paths of an electromagnetic wave, and then generate a distorted space according to the paths by engineering the electromagnetic properties of the media. In this scheme, two examples of application were presented: an undetectable antenna composed of a carpet cloak and a conducting cavity, and a broadband device which can extraordinarily enhance the transmission through a sub-wavelength aperture. Numerical simulations based on the Finite-Difference Time-Domain (FDTD) method were implemented to verify all the designs. Several specific configurations were employed in the modelling in order to simulate the DCT based devices more efficiently and precisely. Performance of these devices was validated and analysed, and the advantages and disadvantages of this technique were investigated. Realisation and fabrication methods i were also studied, and a prototype was designed, fabricated and measured. At the end, as an extension, a multiple discrete coordinate transformation method was proposed and presented. This multiple transformation was proved to effectively relax the limitation of the one-step transformation, and was used to design an all-dielectric thin absorber from a conventional pyramidal one for demonstration.
    Authors
    Tang, Wenxuan
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8695
    Collections
    • Theses [3706]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.