• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Atmospheric Gravity Waves on Giant Planets. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Atmospheric Gravity Waves on Giant Planets.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Atmospheric Gravity Waves on Giant Planets.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Atmospheric Gravity Waves on Giant Planets.

    View/Open
    Watkins_CL Final PhD.pdf (3.217Mb)
    Metadata
    Show full item record
    Abstract
    Internal gravity waves are a common feature of stratified fluids. They facilitate transport of momentum and energy – thus influencing the evolution of the fluid. There is a large body of research addressing the behaviour of gravity waves in the terrestrial atmosphere. This thesis builds and extends the research to giant planets – in particular to close-in extrasolar giant planets and the solar system giant planet, Jupiter. Because the atmospheres of close-in giant planets are expected to be strongly stratified, knowledge of the behaviour of gravity waves in such atmospheres is especially important. Close-in giant planets are thought to have their rotations and orbital period 1:1 synchronised, i.e., they are “tidally locked”. Such planets do not exist in the Solar System. However, many are known from observations of extrasolar systems. Their synchronisation means that they have a permanent day-side and night-side leading to interesting atmospheric dynamics. Modelling these circulations with global circulation models (GCMs) and comparing these models with observations is an active research area. However, many GCMs filter some or all gravity waves removing their effects. This thesis addresses this by explicitly looking at the effects gravity waves can have on the circulation. It is shown that gravity waves provide a mechanism for accelerating, decelerating, and heating the flow. Further, horizontally propagating gravity waves are shown to provide a possible means for coupling the day- and night-sides of tidally locked planets. As well as affecting the dynamics of the atmosphere, gravity wave behaviour is affected by the dynamics of the atmosphere. Therefore, gravity waves can be used to explore atmospheric properties. In this thesis gravity waves observed in Jupiter’s atmosphere, by the Galileo probe, are used to identify features of Jupiter’s atmosphere such as the altitude of the turbopause and the vertical profile of zonal winds at the probe entry site.
    Authors
    Watkins, Christopher Lloyd
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8683
    Collections
    • Theses [3303]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.