• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    U-dualities in Type II string theories and M-theory. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • U-dualities in Type II string theories and M-theory.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • U-dualities in Type II string theories and M-theory.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    U-dualities in Type II string theories and M-theory.

    View/Open
    Musaev_E_PhD_131113.pdf (673.3Kb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    In this thesis the recently developed duality covariant approach to string and Mtheory is investigated. In this formalism the U-duality symmetry of M-theory or Tduality symmetry of Type II string theory becomes manifest upon extending coordinates that describe a background. The effective potential of Double Field Theory is formulated only up to a boundary term and thus does not capture possible topological effects that may come from a boundary. By introducing a generalised normal we derive a manifestly duality covariant boundary term that reproduces the known Gibbons-Hawking action of General Relativity, if the section condition is imposed. It is shown that the full potential can be represented as a sum of the scalar potential of gauged supergravity and a topological term that is a full derivative. The latter is written totally in terms of the geometric flux and the non-geometric Q-flux integrated over the doubled torus. Next we show that the Scherk-Schwarz reduction of M-theory extended geometry successfully reproduces known structures of maximal gauged supergravities. Local symmetries of the extended space defined by a generalised Lie derivatives reduce to gauge transformations and lead to the embedding tensor written in terms of twist matrices. The scalar potential of maximal gauged supergravity that follows from the effective potential is shown to be duality invariant with no need of section condition. Instead, this condition, that assures the closure of the algebra of generalised diffeomorphisms, takes the form of the quadratic constraints on the embedding tensor.
    Authors
    Musaev, Edvard T.
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8610
    Collections
    • Theses [3711]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.