• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Modelling of High-energy Radiation Damage in Materials relevant to Nuclear and Fusion Energy. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Modelling of High-energy Radiation Damage in Materials relevant to Nuclear and Fusion Energy.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Modelling of High-energy Radiation Damage in Materials relevant to Nuclear and Fusion Energy.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modelling of High-energy Radiation Damage in Materials relevant to Nuclear and Fusion Energy.

    View/Open
    Zarkadoula_E_PhD_final.pdf (6.458Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    The objective through my PhD has been to investigate radiation damage effects in materials related to fusion and to safe encapsulation of nuclear waste, using Molecular Dynamics (MD) methods. Particularly, using MD, we acquire essential information about the multi-scale phenomena that take place during irradiation of materials, and gain access at length and time-scales not possible to access experimentally. Computer simulations provide information at the microscopic level, acting as a bridge to the experimental observations and giving insights into processes that take place at small time and length-scales. The increasing computer capabilities in combination with recently developed scalable codes, and the availability of realistic potentials set the stage to perform large scale simulations, approaching phenomena that take place at the atomistic and mesoscopic scale (fractions of m for the first time) in a more realistic way. High-energy radiation damage effects have not been studied previously, yet it is important to simulate and reveal information about the properties of the materials under extreme irradiation conditions. Large scale MD simulations provide a detailed description of microstructural changes. Understanding of the primary stage of damage and short term annealing (scale of tens of picoseconds) will lead to better understanding of the materials properties, best possible long-term use of the materials and, importantly, new routes of optimization of their use. Systems of interest in my research are candidate fusion reactor structural materials (iron and tungsten) and materials related to the radioactive waste management (zirconia). High-energy events require large simulation box length in order for the damage to be contained in the system. This was a limitation for previous simulations, which was recently shifted with my radiation damage MD simulations. For the first time high-energy radiation damage effects were simulated, approaching new energy and length scales, giving a more realistic view of processes related to fusion and to high-energy ion irradiation of material
    Authors
    Zarkadoula, Evangelia.
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8607
    Collections
    • Theses [3600]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.