• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Molecular Mechanisms of Lymphatic Invasion in Pancreatic Ductal Adenocarcinoma. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Molecular Mechanisms of Lymphatic Invasion in Pancreatic Ductal Adenocarcinoma.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Molecular Mechanisms of Lymphatic Invasion in Pancreatic Ductal Adenocarcinoma.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Molecular Mechanisms of Lymphatic Invasion in Pancreatic Ductal Adenocarcinoma.

    View/Open
    Naidoo_K_PhD_final.pdf (4.946Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Pancreatic Ductal Adenocarcinoma (PDAC) is one of the five leading causes of cancer-related deaths in the West, and this, largely, is due to metastatic disease. In order to better understand PDAC metastatic spread and identify novel therapeutic targets, we analysed the proteome of primary tumours and matched lymph node (LN) metastases. As frozen specimens of metastatic lesions are scarce, we examined formalin-fixed paraffin-embedded (FFPE) tissues. Whilst such tissue is in routine diagnostic use, the cross-linkages induced by fixation have, in the past, precluded proteomic investigation for research purposes. Recent technological advances have, however, overcome this technical limitation. Using laser capture microdissection (P.A.L.M system), we isolated malignant epithelia from seven FFPE primary PDAC tumours and matched LN metastases. Following dissection, samples were analysed in duplicate using Multidimensional Protein Identification Technology (MudPIT); this resulted in the identification of 1504 proteins, 854 of which were common to all samples analysed. Comparison of the obtained proteins with data from previous proteomics studies on pancreatic tissue, pancreatic juice, serum and urine resulted in a less than 30 % overlap, indicating that our study has expanded the current database of proteins expressed in this malignancy substantially. Statistical analysis further showed that 115/854 proteins (13.5%) were significantly differentially expressed (g-value ≥ 3.8). Two proteins, S100P and 14-3-3 sigma, with highly significant g-values were confirmed to be significantly differentially expressed (S100P: p = 0.05 and 14-3-3 sigma: p < 0.001) 4 in a larger series of 55 cases of matched primary PDAC and LN metastases using immunohistochemistry. We chose to investigate further the roles of S100P in lymphatic invasion in vitro and in vivo. By co-culturing a Panc1 S100P-overexpressing clone (S5L), or a vector control clone (V3L), with human dermal lymphatic endothelial cells (HDLEC), we were able to show that different receptors mediate S5L adhesion to resting and activated HDLEC as opposed to V3L; and that the presence of S5L cells in these co-cultures significantly increased permeability at one (p = 0.02), four (p = 0.002) and eight (p = 0.007) hours post-seeding, and significantly increased translymphatic endothelial migration at 72 hours (p = 0.006). Using the V3L and S5L cell lines, which were transduced to express luciferase, we also created an orthotopic mouse model of PDAC, as well as experimental metastatic mouse models, in CD1 nude mice. These models were used to evaluate the effects of S100P on primary tumour growth, metastasis and site-specific growth. S100P was only found to significantly increase primary tumour growth in this model (n = 10 animals/group), both by bioluminescence (p = 0.002) and tumour weight (p = 0.01). No metastases (spontaneous and/or experimental) were seen however. Thus, this model can be used to evaluate the anti-tumour efficacy of novel therapies to S100P in the future.
    Authors
    Naidoo, Kalnisha
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8606
    Collections
    • Theses [3600]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.