• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Implicit image annotation by using gaze analysis 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Implicit image annotation by using gaze analysis
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Implicit image annotation by using gaze analysis
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Implicit image annotation by using gaze analysis

    View/Open
    Hajimirza_S_N 140513 Final.pdf (4.449Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Thanks to the advances in technology, people are storing a massive amount of visual information in the online databases. Today it is normal for a person to take a photo of an event with their smartphone and effortlessly upload it to a host domain. For later quick access, this enormous amount of data needs to be indexed by providing metadata for their content. The challenge is to provide suitable captions for the semantics of the visual content. This thesis investigates the possibility of extracting and using the valuable information stored inside human’s eye movements when interacting with digital visual content in order to provide information for image annotation implicitly. A non-intrusive framework is developed which is capable of inferring gaze movements to classify the visited images by a user into two classes when the user is searching for a Target Concept (TC) in the images. The first class is formed of the images that contain the TC and it is called the TC+ class and the second class is formed of the images that do not contain the TC and it is called the TC- class. By analysing the eye-movements only, the developed framework was able to identify over 65% of the images that the subject users were searching for with the accuracy over 75%. This thesis shows that the existing information in gaze patterns can be employed to improve the machine’s judgement of image content by assessment of human attention to the objects inside virtual environments.
    Authors
    Hajimirza, S. Navid
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8502
    Collections
    • Theses [3321]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.