• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Novel Translational Strategies to Treat Cardiac Injury and Dysfunction 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Novel Translational Strategies to Treat Cardiac Injury and Dysfunction
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Novel Translational Strategies to Treat Cardiac Injury and Dysfunction
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Novel Translational Strategies to Treat Cardiac Injury and Dysfunction

    View/Open
    Khan_A PhD_211014.pdf (9.311Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    There is ample evidence of the crucial role of PI3K/Akt dependent signalling in cardiac function, cellular growth and cell apoptosis. The PI3K/Akt pathway mediates cardioprotective effects in experimental models of cardiovascular disease. For example, activation of this pathway ameliorates the sepsis-induced cardiac dysfunction, whereas its activation in myocardial ischaemia/reperfusion (I/R) limits cardiac injury. This thesis investigates the role of two drugs, which activate the PI3K/Aktpathway, namely the haematopoietic cytokine erythropoietin and the anti-malarial drug artesunate, in a mouse animal model of experimental sepsis-induced cardiac dysfunction and in a rat model of regional myocardial I/R injury, respectively. Using a clinically relevant model of caecal ligation and puncture in mice, I demonstrated that aged (8 months) C57BL/6 mice (receiving fluid resuscitation and antibiotic therapy) developed significant cardiac dysfunction (within 24 h), while younger mice (2 months) did not. Erythropoietin attenuated the impaired systolic contractility (in vivo and ex vivo) caused by endotoxaemia (lipopolysacchride 9 mg kg-1; young mice) and sepsis (aged mice). These beneficial effects were associated with activation of Akt and endothelial nitric oxide synthase survival pathways and inhibition of the glycogen synthase kinase 3β, nuclear factor-κB and interleukin 1β pro-inflammatory pathways, secondary to activation of the β-common receptor. A single bolus administration of artesunate at the start of reperfusion in a rat model of myocardial I/R significantly attenuated the infarct size. This effect was mediated via activation of pro-survival pathways (PI3K/Akt and ERK 1/2 and STAT-3) and inhibition of the glycogen synthase kinase 3β and nuclear factor-κB pro-inflammatory pathways. Thus, in this thesis I have demonstrated that pharmacological activation of the PI3K/Akt pathway by erythropoietin and artesunate in sepsis and myocardial I/R, respectively, plays a vital role in the amelioration of cardiac dysfunction and injury.
    Authors
    Khan, Areeg Ismail Ahmed Abdulla
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8445
    Collections
    • Theses [3592]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.