Show simple item record

dc.contributor.authorAhmed, Khairiya O
dc.date.accessioned2015-07-07T12:54:34Z
dc.date.available2015-07-07T12:54:34Z
dc.date.issued2015-08-01
dc.identifier.citationAhmed, K.O. 2015. Relationship between altered myoepithelial phenotype and the inflammatory cell infiltrate in progression of DCIS. http://qmro.qmul.ac.uk/jspui/handle/123456789/7867en_US
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/7867
dc.descriptionThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the authoren_US
dc.description.abstractChanges in the microenvironment have been implicated in the transition of pre-invasive ductal carcinoma in-situ (DCIS) to invasive breast cancer. Normal myoepithelial cells have a tumour suppressor phenotype but they are altered in DCIS and ultimately lost with transition to invasive cancer. A consistent change in DCIS is up-regulation of the integrin αvβ6 in myoepithelial cells. Preliminary observations identified a correlation between myopeithelial αvβ6 and an increased peri-ductal inflammatory infiltrate. The hypothesis of this study is that the altered myoepithelial phenotype influences the peri-ductal inflammatory environment, which in turn mediates a pro-apoptotic effect on myoepithelial cells contributing to their loss. To investigate this, the inflammatory infiltrate was characterised in a series of DCIS tissue in relation to αvβ6 status. This demonstrated significantly higher levels of CD4+ve and FOXP3+ve T cells around αvβ6+ve DCIS ducts compared to αvβ6-ve ducts (P=<0.01), suggesting an increase in Treg cells. In-vivo, Matrigel plugs containing injected into the flanks of female C57/Blk6 normal mice generated influx of higher levels of CD4+ve cells (p=0.005) and FOXP3+ T cells (p=0.007) in the presence of αvβ6+ve myoepithelial cells compared to αvβ6-ve cells, supporting the findings in human tissue samples. Since Treg cells produce TRAIL that can induce apoptosis, we investigated the influence of αvβ6 on myoepithelial cells on the levels of TRAIL in T cells and the hypothesis that αvβ6-positive myoepithelial ells may be more susceptible to TRAIL-induced apoptosis, leading to loss of the myoepithelial barrier. Firstly, levels of TRAIL in Jurkat and primary T cell populations co-cultured with β4 (ii) or β6 myoepithelial cells were measured. This demonstrated a higher level of TRAIL in primary T cells co-cultured β6 myoepithelial cells compared to those co-cultured with β4 myoepithelial cells. β6+ve and β6-ve myoepithelial cells were exposed to TRAIL, and this demonstrated that TRAIL enhanced apoptosis, measured by cleaved PARP, in β6+ve cells. Furthermore, these cells showed loss of the anti-apoptotic protein Galectin-7, and knockdown of Galectin-7 in normal β6-ve myoepithelial cells rendered them more susceptible to TRAIL-induced apoptosis. In DCIS tissues, an inverse relationship between αvβ6 and Galectin-7 in myoepithelial cells was demonstrated, and Cytokine Array analysis showed that αvβ6+ve myoepithelial cells express higher levels of IL-16, which has a role in Treg cell recruitment. Taken together these results suggest that expression of αvβ6 by myoepithelial cells in DCIS generates a tumour-promoter peri-ductal inflammatory infiltrate through altered cytokine release, is associated with reduced galectin-7 expression and enhances myoepithelial cell apoptosis in response to TRAIL. This provides a potential mechanism by which myoepithelial cells may be lost during evolution of DCIS and so contribute to progression to invasive disease.en_US
dc.description.sponsorshipLibyan government scholarship.en_US
dc.language.isoenen_US
dc.publisherQueen Mary University of Londonen_US
dc.subjectductal carcinoma in-situen_US
dc.subjectinvasive breast canceren_US
dc.subjectmyoepithelial cells.en_US
dc.subjectinflammatory infiltrate.en_US
dc.subjectcytokine release,en_US
dc.subjectimmune cellsen_US
dc.subjectmacrophagesen_US
dc.subjectT cellsen_US
dc.titleRelationship between altered myoepithelial phenotype and the inflammatory cell infiltrate in progression of DCISen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses [4125]
    Theses Awarded by Queen Mary University of London

Show simple item record