Show simple item record

dc.contributor.authorLozano, DCP
dc.contributor.authorJones, HE
dc.contributor.authorReina, TR
dc.contributor.authorVolpe, R
dc.contributor.authorBarrow, MP
dc.date.accessioned2021-11-19T09:16:19Z
dc.date.available2021-11-19T09:16:19Z
dc.date.issued2021-10-18
dc.identifier.issn1463-9262
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/75319
dc.description.abstractProduction of fuels and targeted chemicals from biomass represents a current challenge. Pyrolysis of biomass generates liquid bio-oils but these are highly complex mixtures. In order to obtain the desired products, optimized reaction conditions are required and this, in turn, drives the need for a fundamental understanding of the complex reaction network. Bio-oils are a complex mixture of thousands of individual molecular compositions, with differing numbers of carbon, hydrogen, nitrogen, and oxygen atoms (c, h, n, and o, respectively). The compositional spaces of such complex mixtures with high oxygen contents are commonly plotted using van Krevelen diagrams, where the H/C versus O/C ratios are displayed. For a bio-oil to be effectively used in engines, further upgrading is necessary to drive the compositions towards low oxygen and high hydrogen content (thus, low O/C and high H/C values). Here, we propose reaction vectors in van Krevelen diagrams to outline the possible reaction routes that favour the production of molecules with increased energy density, using examples of bio-oils produced from citrus waste (lemon and orange peel) and olive pulp. When reactions such as the addition or loss of CO, CO2, CH4, and H2O occur, a displacement of the compositions of molecules in terms of H/C and O/C coordinates is observed. The direction and magnitude of the displacement along each axis in van Krevelen diagrams depends upon the specific reaction route and the elemental content of each molecule. As a consequence of the wide diversity of compositions, different reaction routes are suggested that include multi-step upgrading processes, including hydrogenation and the elimination of oxygen in the form of CO and CO2. The detailed molecular composition of the starting material, plotted in van Krevelen diagrams for visualization, paves the way for greater insight into potential reaction pathways for components within these highly complex mixtures. In turn, the equations proposed hold potential to inform future production strategies, increasing the energy density of bio-oils whilst also reducing the undesirable char formation.en_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.ispartofGREEN CHEMISTRY
dc.rightsThis item is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.titleUnlocking the potential of biofuels via reaction pathways in van Krevelen diagramsen_US
dc.typeArticleen_US
dc.rights.holder© 2021, The Author(s)
dc.identifier.doi10.1039/d1gc01796a
pubs.author-urlhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000710574800001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=612ae0d773dcbdba3046f6df545e9f6aen_US
pubs.notesNot knownen_US
pubs.publication-statusPublisheden_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

This item is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Except where otherwise noted, this item's license is described as This item is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.