Show simple item record

dc.contributor.authorO'Sullivan, JD
dc.contributor.authorTerry, JCD
dc.contributor.authorRossberg, AG
dc.date.accessioned2021-08-05T11:05:18Z
dc.date.available2021-04-27
dc.date.available2021-08-05T11:05:18Z
dc.date.issued2021-06-15
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/73469
dc.description.abstractTurnover of species composition through time is frequently observed in ecosystems. It is often interpreted as indicating the impact of changes in the environment. Continuous turnover due solely to ecological dynamics-species interactions and dispersal-is also known to be theoretically possible; however the prevalence of such autonomous turnover in natural communities remains unclear. Here we demonstrate that observed patterns of compositional turnover and other important macroecological phenomena can be reproduced in large spatially explicit model ecosystems, without external forcing such as environmental change or the invasion of new species into the model. We find that autonomous turnover is triggered by the onset of ecological structural instability-the mechanism that also limits local biodiversity. These results imply that the potential role of autonomous turnover as a widespread and important natural process is underappreciated, challenging assumptions implicit in many observation and management tools. Quantifying the baseline level of compositional change would greatly improve ecological status assessments.en_US
dc.format.extent3627 - ?
dc.languageeng
dc.publisherNature Publishing Groupen_US
dc.relation.ispartofNat Commun
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.titleIntrinsic ecological dynamics drive biodiversity turnover in model metacommunities.en_US
dc.typeArticleen_US
dc.rights.holder© 2021 The Author(s)
dc.identifier.doi10.1038/s41467-021-23769-7
pubs.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/34131131en_US
pubs.issue1en_US
pubs.notesNot knownen_US
pubs.publication-statusPublished onlineen_US
pubs.volume12en_US
dcterms.dateAccepted2021-04-27
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.