Show simple item record

dc.contributor.authorWang, M
dc.contributor.authorAvital, E
dc.contributor.authorKorakianitis, T
dc.contributor.authorWilliams, J
dc.contributor.authorAi, K
dc.date.accessioned2021-01-15T14:40:21Z
dc.date.available2021-01-15T14:40:21Z
dc.date.issued2020-12-01
dc.identifier.issn0309-1708
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/69783
dc.description.abstractAquatic vegetation dramatically shifts the main flow, secondary flow and turbulent structures in a meandering channel. In this study, hydrodynamics in a bending channel with a vegetation patch (VP) has been numerically studied under the variation of curvature ratios (CRs=0.5, 1.0, 1.5, 2.0) and the vegetation density i.e. Solid Volume Fractions (SVF=1.13%, 4.86%). Both effects on vegetation shear flow, helical flow, bed shear stress and bulk drag coefficients are studied in twelve cases by using Ansys Fluent package. Unsteady Reynolds Averaging Navier-Stokes (URANS) framework coupled with the Reynolds Stress turbulence Model (RSM) and Volume Of Fluid (VOF) approach is successfully applied to predict the entire flow field including multi-circulation cells as well as the free surface. The conclusions are summarized as three points. Firstly, an increase of CR moves the main circulation cell and thalweg's location towards the outer bank, while decreasing the drag coefficients in streamwise and spanwise. However, the CR weakly affects the normalised shear flow velocity profiles and dominant eddy frequencies downstream of the VP. Secondly, the trend of the dominant shedding frequency to fall with the increase of SVF that has been known only for SVF<3.4% is extended up to 10.4%. Furthermore, an opposite trend is found between the frequency and SVF for 10.4%<SVF<20%. Thirdly, a newly proposed patch dimensionless frequency number, , links Stp and SVF, where N is the number of stems in the patch. This number stays almost constant for each case series regardless of the variation of SVF (for SVF<10.4%). We also conclude that is strongly determined by the patch shape factor, mildly influenced by the patch Reynolds number, but it excludes the influence of the SVF and N. The insights from the present study unveil the complicated eco-hydro-morphic interactions among the bio-mass density, turbulent flow and channel meanders’ variation. It provides a better understanding of natural bending river systems’ development and fundamentals for the recovery of urban channel ecosystems by vegetated re-meandering.en_US
dc.format.extent103843 - ?
dc.publisherElsevieren_US
dc.relation.ispartofAdvances in Water Resources
dc.rightshttps://doi.org/10.1016/j.advwatres.2020.103843
dc.titleA numerical study on the influence of curvature ratio and vegetation density on a partially vegetated U-bend channel flowen_US
dc.typeArticleen_US
dc.rights.holder© 2020 Elsevier Ltd.
dc.identifier.doi10.1016/j.advwatres.2020.103843
pubs.notesNot knownen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record