Show simple item record

dc.contributor.authorMoro, G
dc.date.accessioned2020-09-17T12:51:41Z
dc.date.available2020-09-17T12:51:41Z
dc.date.issued12/05/2020
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/67082
dc.description.abstractIn this thesis we seek to explore the potential for continuous key position to be used as an expressive control in keyboard musical instruments, and how preexisting skills can be adapted to leverage this additional control. Interaction between performer and sound generation on a keyboard instrument is often restricted to a number of discrete events on the keys themselves (notes onsets and offsets), while complementary continuous control is provided via additional interfaces, such as pedals, modulation wheels and knobs. The rich vocabulary of gestures that skilled performers can achieve on the keyboard is therefore often simplified to a single, discrete velocity measurement. A limited number of acoustical and electromechanical keyboard instruments do, however, present affordances of continuous key control, so that the role of the key is not limited to delivering discrete events, but its instantaneous position is, to a certain extent, an element of expressive control. Recent evolutions in sensing technologies allow to leverage continuous key position as an expressive element in the sound generation of digital keyboard musical instruments. We start by exploring the expression available on the keys of the Hammond organ, where nine contacts are closed at different points of the key throw for each key onset and we find that the velocity and the percussiveness of the touch affect the way the contacts close and bounce, producing audible differences in the onset transient of each note. We develop an embedded hardware and software environment for low-latency sound generation controlled by continuous key position, which we use to create two digital keyboard instruments. The first of these emulates the sound of a Hammond and can be controlled with continuous key position, so that it allows for arbitrary mapping between the key position and the nine virtual contacts of the digital sound generator. A study with 10 musicians shows that, when exploring the instrument on their own, the players can appreciate the differences between different settings and tend to develop a personal preference for one of them. In the second instrument, continuous key position is the fundamental means of expression: percussiveness, key position and multi-key gestures control the parameters of a physical model of a flute. In a study with 6 professional musicians playing this instrument we gather insights on the adaptation process, the limitations of the interface and the transferability of traditional keyboard playing techniques.en_US
dc.language.isoenen_US
dc.publisherQueen Mary University of London
dc.subjectvisual trackingen_US
dc.subjectElectronic Engineering and Computer Scienceen_US
dc.subjectroboticsen_US
dc.titleBeyond key velocity: Continuous sensing for expressive control on the Hammond Organ and Digital keyboardsen_US
dc.typeThesisen_US
dc.rights.holderThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses [4209]
    Theses Awarded by Queen Mary University of London

Show simple item record