Show simple item record

dc.contributor.authorFeng, H
dc.contributor.authorPang, J
dc.contributor.authorFang, Q
dc.contributor.authorChen, C
dc.contributor.authorWen, P
dc.date.accessioned2020-06-01T13:21:35Z
dc.date.available2020-04-01
dc.date.available2020-06-01T13:21:35Z
dc.date.issued2020-08-10
dc.identifier.citationFeng, Hui et al. "Enhanced Ductility Of Nanomaterials Through Cooperative Dislocation Emission From Cracks And Grain Boundaries". International Journal Of Mechanical Sciences, vol 179, 2020, p. 105652. Elsevier BV, doi:10.1016/j.ijmecsci.2020.105652. Accessed 1 June 2020.en_US
dc.identifier.issn0020-7403
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/64525
dc.description.abstractAn analytical model is established to explore the cooperative mechanism between the dislocation emission from cracks and grain boundaries driven by grain boundary sliding in deformed nanocrystalline materials. In our model, high local stress concentration nearby the crack actives grain boundary sliding which creates a wedge disclination dipole at the grain boundaries’ triple junctions. The grain size-dependent criterions for the dislocation emission from the crack tip and the grain boundary are respectively derived. Influences of grain boundary sliding and grain size on the cooperative mechanism are discussed. The results show that the dislocation emission from the grain boundary is activated ahead of that from the crack tip for small grain sizes. This can explain that grain boundary sliding can toughen the nanocrystalline materials even though it suppresses dislocation emission from cracks when their grain sizes are relative small, which is because the dislocation emission from grain boundaries is activated. With the increasing grain size, the main dislocation source may transform from grain boundaries to crack tips due to grain boundary sliding. Therefore, the ductility of nanomaterials with different grain sizes can be enhanced through the cooperative dislocation emission from cracks and grain boundaries.en_US
dc.publisherElsevieren_US
dc.relation.ispartofInternational Journal of Mechanical Sciences
dc.rightshttps://doi.org/10.1016/j.ijmecsci.2020.105652
dc.titleEnhanced ductility of nanomaterials through cooperative dislocation emission from cracks and grain boundariesen_US
dc.typeArticleen_US
dc.rights.holder© 2020 Elsevier Ltd.
dc.identifier.doi10.1016/j.ijmecsci.2020.105652
pubs.notesNot knownen_US
pubs.publication-statusPublisheden_US
pubs.volume179en_US
dcterms.dateAccepted2020-04-01
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record