Show simple item record

dc.contributor.authorSagonas, K
dc.contributor.authorMeyer, BS
dc.contributor.authorKaufmann, J
dc.contributor.authorLenz, TL
dc.contributor.authorHäsler, R
dc.contributor.authorEizaguirre, C
dc.date.accessioned2020-04-15T09:43:37Z
dc.date.available2020-04-15T09:43:37Z
dc.date.issued2020
dc.identifier.citationSagonas, Kostas et al. "Experimental Parasite Infection Causes Genome-Wide Changes In DNA Methylation". Molecular Biology And Evolution, 2020. Oxford University Press (OUP), doi:10.1093/molbev/msaa084. Accessed 15 Apr 2020.en_US
dc.identifier.issn0737-4038
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/63586
dc.description.abstractParasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite infection has been widely studied, little is known about how epigenetic changes contribute to parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA methylation modifications to respond to parasite infections. In a controlled infection experiment, we used the three-spined stickleback fish, a model species for host-parasite studies, and their nematode parasite Camallanus lacustris. We showed that the levels of DNA methylation are higher in infected fish. Results furthermore suggest correlations between DNA methylation and shifts in key fitness and immune traits between infected and control fish, including respiratory burst and functional trans-generational traits such as the concentration of motile sperm. We revealed that genes associated with metabolic, developmental and regulatory processes (cell death and apoptosis) were differentially methylated between infected and control fish. Interestingly, genes such as the neuropeptide FF receptor 2 and the integrin alpha 1 as well as molecular pathways including the Th1 and Th2 cell differentiation were hypermethylated in infected fish, suggesting parasite-mediated repression mechanisms of immune responses. Altogether, we demonstrate that parasite infection contributes to genome-wide DNA methylation modifications. Our study brings novel insights into the evolution of vertebrate immunity and suggests that epigenetic mechanisms are complementary to genetic responses against parasite-mediated selection.en_US
dc.languageen
dc.publisherOxford University Press (OUP)en_US
dc.relation.ispartofMolecular Biology and Evolution
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.titleExperimental parasite infection causes genome-wide changes in DNA methylationen_US
dc.typeArticleen_US
dc.rights.holder© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
dc.identifier.doi10.1093/molbev/msaa084
pubs.notesNot knownen_US
pubs.publication-statusPublished onlineen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.