• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Interactive real-time musical systems 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Interactive real-time musical systems
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Interactive real-time musical systems
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Interactive real-time musical systems

    View/Open
    ROBERTSONInteractiveReal-time2009.pdf (11.04Mb)
    Metadata
    Show full item record
    Abstract
    This thesis focuses on the development of automatic accompaniment systems. We investigate previous systems and look at a range of approaches that have been attempted for the problem of beat tracking. Most beat trackers are intended for the purposes of music information retrieval where a `black box' approach is tested on a wide variety of music genres. We highlight some of the diffculties facing offline beat trackers and design a new approach for the problem of real-time drum tracking, developing a system, B-Keeper, which makes reasonable assumptions on the nature of the signal and is provided with useful prior knowledge. Having developed the system with offline studio recordings, we look to test the system with human players. Existing offline evaluation methods seem less suitable for a performance system, since we also wish to evaluate the interaction between musician and machine. Although statistical data may reveal quantifiable measurements of the system's predictions and behaviour, we also want to test how well it functions within the context of a live performance. To do so, we devise an evaluation strategy to contrast a machine-controlled accompaniment with one controlled by a human. We also present recent work on a real-time multiple pitch tracking, which is then extended to provide automatic accompaniment for harmonic instruments such as guitar. By aligning salient notes in the output from a dual pitch tracking process, we make changes to the tempo of the accompaniment in order to align it with a live stream. By demonstrating the system's ability to align offline tracks, we can show that under restricted initial conditions, the algorithm works well as an alignment tool.
    Authors
    Robertson, Andrew
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/602
    Collections
    • Theses [3304]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.