• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Form factors and scattering amplitudes in supersymmetric gauge theories 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Form factors and scattering amplitudes in supersymmetric gauge theories
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Form factors and scattering amplitudes in supersymmetric gauge theories
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Form factors and scattering amplitudes in supersymmetric gauge theories

    View/Open
    Jones_Martyna_PhD_270918.pdf (3.028Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    The study of scattering amplitudes in the maximally supersymmetric Yang-Mills theory (N = 4 SYM) is a thriving field of research. Since the reformulation of perturbative gauge theory as a twistor string theory by Witten, this area has witnessed a flurry of activity, leading to the discovery of a multitude of novel techniques, such as recursion relations and MHV diagrams, collectively referred to as on-shell methods. In parallel, many previously hidden properties and rich mathematical structures have been found, a powerful example of such being the dual superconformal symmetry. It is natural to ask whether this understanding can be extended to phenomenologically relevant theories as well as other quantities. The goal of the present work is to apply the modern on-shell methods to calculations of form factors, with particular focus on those which are relevant for describing Higgs production in QCD from the point of view of an effective field theory. Specifically, our analysis will be carried out in supersymmetric gauge theories at two-loop level and will consist of several steps. We focus first on operators in the SU(2j3) closed subsector of N = 4 SYM, in particular two non-protected, dimension-three operators. We then move on to consider the trilinear operator Tr(F3) and a related descendant of the Konishi operator which contains Tr(F3), also in N =4 SYM. Finally, we concentrate on two-loop form factors of these two operators in theories with less-than-maximal supersymmetry. The result of our investigation shows an emergence of a small number of universal building blocks, ultimately related to the two-loop form factor of a trilinear half-BPS operator. This finding suggests that the most complicated, maximally transcendental part of Higgs plus multi-gluon amplitudes in QCD can be equivalently computed in a remarkably simple way by considering form factors of half-BPS operators in N =4 SYM.
    Authors
    Jones, Martyna Maria
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/53582
    Collections
    • Theses [3651]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.